Skip to main content
Log in

Rotator cuff tears noncontrast MRI compared to MR arthrography

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

To compare the accuracy of indirect magnetic resonance arthrography and noncontrast magnetic resonance imaging for diagnosing rotator cuff tears.

Materials and methods

In total, 333 patients who underwent noncontrast magnetic resonance imaging or indirect magnetic resonance arthrography were included retrospectively. Two musculoskeletal radiologists evaluated the images for the presence of supraspinatus-infraspinatus and subscapularis tendon tears. The overall diagnostic performance was calculated using the arthroscopic findings as the reference standard. Statistical differences between the diagnostic performances of the two methods were analyzed.

Results

Ninety-six and 237 patients who underwent noncontrast magnetic resonance imaging and indirect magnetic resonance arthrography were assigned into groups A and B, respectively. Sensitivity for diagnosing articular-surface partial-thickness supraspinatus-infraspinatus tendon tear was slightly higher in group B than in group A. Statistical significance was confirmed by multivariate analysis using the generalized estimating equation (p = 0.046). The specificity for diagnosing subscapularis tendon tear (85 % vs. 68 %, p = 0.012) and grading accuracy (57 % vs. 40 %, p = 0.005) was higher in group B than in group A; the differences were statistically significant for one out of two readers. Univariate analysis using the generalized estimating equation showed that the accuracy for diagnosing subscapularis tendon tear in group B was higher than in group A (p = 0.042). There were no statistically significant differences between the diagnostic performances of both methods for any other parameters.

Conclusion

Indirect magnetic resonance arthrography may facilitate more accurate diagnosis and grading of subscapularis tendon tears compared with noncontrast magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Winalski CS, Aliabadi P, Wright RJ, Shortkroff S, Sledge CB, Weissman BN. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology. 1993;187(1):179–85.

    Article  CAS  PubMed  Google Scholar 

  2. Drape JL, Thelen P, Gay-Depassier P, Silbermann O, Benacerraf R. Intraarticular diffusion of Gd-DOTA after intravenous injection in the knee: MR imaging evaluation. Radiology. 1993;188(1):227–34.

    Article  CAS  PubMed  Google Scholar 

  3. Vahlensieck M, Sommer T, Textor J, et al. Indirect MR arthrography: techniques and applications. Eur Radiol. 1998;8(2):232–5.

    Article  CAS  PubMed  Google Scholar 

  4. Yagci B, Manisali M, Yilmaz E, et al. Indirect MR arthrography of the shoulder in detection of rotator cuff ruptures. Eur Radiol. 2001;11(2):258–62.

    Article  CAS  PubMed  Google Scholar 

  5. Bergin D, Schweitzer ME. Indirect magnetic resonance arthrography. Skelet Radiol. 2003;32(10):551–8.

    Article  CAS  Google Scholar 

  6. Dinauer PA, Flemming DJ, Murphy KP, Doukas WC. Diagnosis of superior labral lesions: comparison of noncontrast MRI with indirect MR arthrography in unexercised shoulders. Skelet Radiol. 2007;36(3):195–202.

    Article  Google Scholar 

  7. Lee MJ, Motamedi K, Chow K, Seeger LL. Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skelet Radiol. 2008;37(1):19–25.

    Article  Google Scholar 

  8. Vahlensieck M, Peterfy CG, Wischer T, et al. Indirect MR arthrography: optimization and clinical applications. Radiology. 1996;200(1):249–54.

    Article  CAS  PubMed  Google Scholar 

  9. Jung JY, Yoon YC, Yi SK, Yoo J, Choe BK. Comparison study of indirect MR arthrography and direct MR arthrography of the shoulder. Skelet Radiol. 2009;38(7):659–67.

    Article  Google Scholar 

  10. Sommer T, Vahlensieck M, Wallny T, et al. Indirect MR arthrography in the diagnosis of lesions of the labrum glenoidale. Röfo. 1997;167(1):46–51.

    CAS  PubMed  Google Scholar 

  11. Wagner SC, Schweitzer ME, Morrison WB, Fenlin Jr JM, Bartolozzi AR. Shoulder instability: accuracy of MR imaging performed after surgery in depicting recurrent injury—initial findings. Radiology. 2002;222(1):196–203.

    Article  PubMed  Google Scholar 

  12. Van Dyck P, Gielen JL, Veryser J, et al. Tears of the supraspinatus tendon: assessment with indirect magnetic resonance arthrography in 67 patients with arthroscopic correlation. Acta Radiol. 2009;50(9):1057–63.

    Article  PubMed  Google Scholar 

  13. Lee JH, Yoon YC, Jee S. Diagnostic performance of indirect MR arthrography for the diagnosis of rotator cuff tears at 3.0 T. Acta Radiol. 2015;56(6):720–6.

    Article  PubMed  Google Scholar 

  14. Herold T, Bachthaler M, Hamer OW, et al. Indirect MR arthrography of the shoulder: use of abduction and external rotation to detect full- and partial-thickness tears of the supraspinatus tendon. Radiology. 2006;240(1):152–60.

    Article  PubMed  Google Scholar 

  15. Allmann K-H, SCHÄFER O, Hauer M, et al. Indirect MR arthrography of the unexercised glenohumeral joint in patients with rotator cuff tears. Investig Radiol. 1999;34(6):435.

    Article  CAS  Google Scholar 

  16. Clark J, Harryman D. Tendons, ligaments, and capsule of the rotator cuff. J Bone Joint Surg Am. 1992;74(5):713–25.

    CAS  PubMed  Google Scholar 

  17. Minagawa H, Itoi E, Konno N, et al. Humeral attachment of the supraspinatus and infraspinatus tendons: an anatomic study. Arthrosc: J Arthrosc Relat Surg. 1998;14(3):302–6.

    Article  CAS  Google Scholar 

  18. Mochizuki T, Sugaya H, Uomizu M, et al. Humeral insertion of the supraspinatus and infraspinatus: new anatomical findings regarding the footprint of the rotator cuff. J Bone Joint Surg Am. 2008;90(5):962–9.

    Article  PubMed  Google Scholar 

  19. Yoo JC, Rhee YG, Shin SJ, et al. Subscapularis tendon tear classification based on 3-dimensional anatomic footprint: a cadaveric and prospective clinical observational study. Arthroscopy. 2015;31(1):19–28.

    Article  PubMed  Google Scholar 

  20. Opsha O, Malik A, Baltazar R, et al. MRI of the rotator cuff and internal derangement. Eur J Radiol. 2008;68(1):36–56.

    Article  PubMed  Google Scholar 

  21. Kassarjian A, Bencardino JT, Palmer WE. MR imaging of the rotator cuff. Radiol Clin N Am. 2006;44(4):503–23. vii-viii.

    Article  PubMed  Google Scholar 

  22. Razzano A, Morscher M, Jones K, Eghbal A. Indirect shoulder MR arthrography: a novel technique for identifying labral pathology in young patients. Orlando, FL: American Academy of Pediatrics National Conference and Exhibition; 2013. p. 26–9.

    Google Scholar 

  23. Fallahi F, Green N, Gadde S, Jeavons L, Armstrong P, Jonker L. Indirect magnetic resonance arthrography of the shoulder: a reliable diagnostic tool for investigation of suspected labral pathology. Skelet Radiol. 2013;42(9):1225–33.

    Article  Google Scholar 

  24. Oh DK, Yoon YC, Kwon JW, et al. Comparison of indirect isotropic MR arthrography and conventional MR arthrography of labral lesions and rotator cuff tears: a prospective study. AJR Am J Roentgenol. 2009;192(2):473–9.

    Article  PubMed  Google Scholar 

  25. Vahlensieck M, Sommer T. Indirect MR arthrography of the shoulder. An alternative to direct MR arthrography? Radiologe. 1996;36(12):960–5.

    Article  CAS  PubMed  Google Scholar 

  26. Song KD, Kwon JW, Yoon YC, Choi SH. Indirect MR arthrographic findings of adhesive capsulitis. AJR Am J Roentgenol. 2011;197(6):W1105–9.

    Article  PubMed  Google Scholar 

  27. Pfirrmann CW, Zanetti M, Weishaupt D, Gerber C, Hodler J. Subscapularis tendon tears: detection and grading at MR arthrography. Radiology. 1999;213(3):709–14.

    Article  CAS  PubMed  Google Scholar 

  28. Lo IK, Burkhart SS. The etiology and assessment of subscapularis tendon tears: a case for subcoracoid impingement, the roller-wringer effect, and TUFF lesions of the subscapularis. Arthroscopy. 2003;19(10):1142–50.

    Article  PubMed  Google Scholar 

  29. Lafosse L, Jost B, Reiland Y, Audebert S, Toussaint B, Gobezie R. Structural integrity and clinical outcomes after arthroscopic repair of isolated subscapularis tears. J Bone Joint Surg Am. 2007;89(6):1184–93.

    Article  PubMed  Google Scholar 

  30. Morag Y, Jamadar DA, Miller B, Dong Q, Jacobson JA. The subscapularis: anatomy, injury, and imaging. Skelet Radiol. 2011;40(3):255–69.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to Keumhee Cho and Min-Ji Kim, the staff of Biostatistics and Clinical epidemiology Center, for their contribution to the analysis and design for the statics.

Conflict of interest

The authors declare that they have no conflict of interest.

IRB statement

Approved

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Cheol Yoon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Yoon, Y.C., Jung, J.Y. et al. Rotator cuff tears noncontrast MRI compared to MR arthrography. Skeletal Radiol 44, 1745–1754 (2015). https://doi.org/10.1007/s00256-015-2228-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-015-2228-z

Keywords

Navigation