Skip to main content
Log in

Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings.

Materials and methods

The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H&E)-stained sections. Histological results were evaluated using the modified O’Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group.

Results

The thickness index and histological O’Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O’Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O’Driscoll score in both groups (microfracture: r s = 0.745, P < 0.001; joint debridement: r s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O’Driscoll score in both groups (microfracture: r s = −0.715, P = 0.002; joint debridement: r s = −0.826, P < 0.001).

Conclusion

Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and histological O’Driscoll score. MRI was correlated with the histological O’Driscoll score, which indicated that quantitative MRI 3D-DESS and T2 mapping could evaluate cartilage repair after microfracture as an effective noninvasive tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Eshed I, Trattnig S, Sharon M, et al. Assessment of cartilage repair after chondrocyte transplantation with a fibrin-hyaluronan matrix—correlation of morphological MRI, biochemical T2 mapping and clinical outcome. Eur J Radiol. 2012;81(6):1216–23.

    Article  PubMed  Google Scholar 

  2. Marder RA, Hopkins G, Timmerman LA. Arthroscopic microfracture of chondral defects of the knee: a comparison of two postoperative treatments. Arthrosc. 2005;21(2):152–8.

    Article  Google Scholar 

  3. Von Keudella A, Atzwanger J, Forstner R, et al. Radiological evaluation of cartilage after microfracture treatment: a long-term follow-up study. Eur J Radiol. 2012;81(7):1618–24.

    Article  Google Scholar 

  4. Lim HC, Bae JH, Song SH, et al. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res. 2012;470(8):2261–7.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kreuz PC, Steinwachs MR, Erggelet C, et al. Results after microfracture of full-thickness chondral defects in different compartments in the knee. Osteoarthritis Cartilage. 2006;14(11):1119–25.

    Article  CAS  PubMed  Google Scholar 

  6. Mithoefer K, Williams RJ, Warren RF, et al. The microfracture technique for the treatment of articular cartilage lesions in the knee—a prospective cohort study. J Bone Joint Surg Am. 2005;87A(9):1911–20.

    Article  Google Scholar 

  7. Mithoefer K, McAdams T, Williams RJ, et al. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee an evidence-based systematic analysis. Am J Sports Med. 2009;37(10):2053–63.

    Article  PubMed  Google Scholar 

  8. Steadman JR, Rodkey WG, Briggs KK, et al. The microfracture technique to treat full thickness articular cartilage defects of the knee. Orthopade. 1999;28(1):26–32.

    CAS  PubMed  Google Scholar 

  9. Henderson I, Lavigne P, Valenzuela H, et al. Autologous chondrocyte implantation: superior biologic properties of hyaline cartilage repairs. Clin Orthop Relat Res 2007;455.

  10. Peterson L, Minas T, Brittberg M, et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res. 2000;374:212–34.

    Article  PubMed  Google Scholar 

  11. Apprich S, Trattnig S, Welsch GH, et al. Assessment of articular cartilage repair tissue after matrix-associated autologous chondrocyte transplantation or the microfracture technique in the ankle joint using diffusion-weighted imaging at 3 Tesla (vol 20, pg 703, 2012). Osteoarthr Cartil. 2012;20(9):1056.

    Article  Google Scholar 

  12. Kurkijarvi JE, Mattila L, Ojala RO, et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T-2 relaxation time and dGEMRIC. Osteoarthr Cartil. 2007;15(4):372–8.

    Article  CAS  PubMed  Google Scholar 

  13. Welsch GH, Mamisch TC, Domayer SE, et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology. 2008;247(1):154–61.

    Article  PubMed  Google Scholar 

  14. Trattnig S, Ba-Ssalamah A, Pinker K, et al. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging. 2005;23(7):779–87.

    Article  CAS  PubMed  Google Scholar 

  15. Welsch GH, Trattnig S, Scheffler K, et al. Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging. 2008;28(4):979–86.

    Article  PubMed  Google Scholar 

  16. Welsch GH, Trattnig S, Domayer S, et al. Multimodal approach in the use of clinical scoring, morphological MRI and biochemical T2-mapping and diffusion-weighted imaging in their ability to assess differences between cartilage repair tissue after microfracture therapy and matrix-associated autologous chondrocyte transplantation: a pilot study. Osteoarthr Cartil. 2009;17(9):1219–27.

    Article  CAS  PubMed  Google Scholar 

  17. Lee KT, Choi YS, Lee YK, et al. Comparison of MRI and arthroscopy in modified MOCART scoring system after autologous chondrocyte implantation for osteochondral lesion of the talus. Orthop 2011;34(8).

  18. Ramappa AJ, Gill TJ, Bradford CH, et al. Magnetic resonance imaging to assess knee cartilage repair tissue after microfracture of chondral defects. J Knee Surg 2007;20(3).

  19. Oneto JMM, Ellermann J, LaPrade RF. Longitudinal evaluation of cartilage repair tissue after microfracture using T2-mapping: a case report with arthroscopic and MRI correlation. Knee Surg Sports Traumatol. Arthrosc: Off J ESSKA 2010;18(11).

  20. Domayer SE, Kutscha-Lissberg F, Welsch G, et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome—preliminary results. Osteoarthritis Cartilage. 2008;16(8):903–8.

    Article  CAS  PubMed  Google Scholar 

  21. Glaser C. New techniques for cartilage imaging: T2 relaxation time and diffusion-weighted MR imaging. Radiol Clin N Am. 2005;43(4):641.

    Article  PubMed  Google Scholar 

  22. Watanabe A, Boesch C, Anderson SE, et al. Ability of dGEMRIC and T2 mapping to evaluate cartilage repair after microfracture: a goat study. Osteoarthr Cartil. 2009;17(10):1341–9.

    Article  CAS  PubMed  Google Scholar 

  23. Trattnig S, Mamisch TC, Welsch GH, et al. Quantitative T-2 mapping of matrix-associated autologous chondrocyte transplantcation at 3 Tesla—an in vivo cross-sectional study. Invest Radiol. 2007;42(6):442–8.

    Article  PubMed  Google Scholar 

  24. Theologis AA, Schairer WW, Carballido-Gamio J, et al. Longitudinal analysis of T-1 rho and T-2 quantitative MRI of knee cartilage laminar organization following microfracture surgery. Knee. 2012;19(5):652–7.

    Article  PubMed Central  PubMed  Google Scholar 

  25. White LM, Sussman MS, Hurtig M, et al. Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology. 2006;241(2):407–14.

    Article  PubMed  Google Scholar 

  26. Frisbie DD, Trotter GW, Powers BE, et al. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28(4):242–55.

    Article  CAS  PubMed  Google Scholar 

  27. Jackson DW, Lalor PA, Aberman HM, et al. Spontaneous repair of full-thickness defects of articular cartilage in a goat model—a preliminary study. J Bone Joint Surg Am. 2001;83A(1):53–64.

    Google Scholar 

  28. Hunziker EB. Biologic repair of articular cartilage. Defect models in experimental animals and matrix requirements. Clin Orthop Relat Res 1999(367 Suppl):S135-46.

  29. Wei X, Gao J, Messner K. Maturation-dependent repair of untreated osteochondral defects in the rabbit knee joint. J Biomed Mater Res. 1997;34(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  30. Dell’Accio F, Vanlauwe J, Bellemans J, et al. Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res. 2003;21(1):123–31.

    Article  PubMed  Google Scholar 

  31. Chu CR, Szczodry M, Bruno S. Animal models for cartilage regeneration and repair. Tissue Eng Part B Rev. 2010;16(1):105–15.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Chen H, Sun J, Hoemann CD, et al. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.

    Article  PubMed  Google Scholar 

  33. Yang HS, La WG, Bhang SH, et al. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A. 2011;17(13–14):1809–18.

    Article  CAS  PubMed  Google Scholar 

  34. Grunder W, Wagner M, Werner A. MR-microscopic visualization of anisotropic internal cartilage structures using the magic angle technique. Magn Reson Med. 1998;39(3):376–82.

    Article  CAS  PubMed  Google Scholar 

  35. Rubenstein JD, KIM JK, Moravaprotzner I, et al. Effects of collagen orientation on mr-imaging characteristics of bovine articular-cartilage. Radiology. 1993;188(1):219–26.

    Article  CAS  PubMed  Google Scholar 

  36. Ahn JH, Lee SH, Choi SH, et al. Magnetic resonance imaging evaluation of anterior cruciate ligament reconstruction using quadrupled hamstring tendon autografts: comparison of remnant bundle preservation and standard technique. Am J Sports Med. 2010;38(9):1768–77.

    Article  PubMed  Google Scholar 

  37. Strauss E, Schachter A, Frenkel S, et al. The efficacy of intra-articular hyaluronan injection after the microfracture technique for the treatment of articular cartilage lesions. Am J Sports Med. 2009;37(4):720–6.

    Article  PubMed  Google Scholar 

  38. Domayer SE, Welsch GH, Dorotka R, et al. MRI monitoring of cartilage repair in the knee: a review. Semin Musculoskelet Radiol. 2008;12(4):302–17.

    Article  PubMed  Google Scholar 

  39. Shim IK, Yook YJ, Lee SY, et al. Healing of articular cartilage defects treated with a novel drug-releasing rod-type implant after microfracture surgery. J Control Release. 2008;129(3):187–91.

    Article  CAS  PubMed  Google Scholar 

  40. Watrin-Pinzano A, Ruaud JP, Cheli Y, et al. Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. MAGMA. 2004;17(3–6):219–28.

    Article  CAS  PubMed  Google Scholar 

  41. Nissi MJ, Rieppo J, Toyras J, et al. T-2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthr Cartil. 2006;14(12):1265–71.

    Article  CAS  PubMed  Google Scholar 

  42. Mamisch TC, Hughes T, Mosher TJ, et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol. 2012;41(3):287–92.

    Article  PubMed  Google Scholar 

  43. Brittberg M, Nilsson A, Lindahl A, et al. Rabbit articular cartilage defects treated with autologous cultured chondrocytes. Clin Orthop Relat Res. 1996;326:270–83.

    Article  PubMed  Google Scholar 

  44. Nieminen MT, Rieppo J, Silvennoinen J, et al. Spatial assessment of articular cartilage proteoglycans with Gd-DTPA-enhanced T1 imaging. Magn Reson Med. 2002;48(4):640–8.

    Article  CAS  PubMed  Google Scholar 

  45. Raya JG, Horng A, Dietrich O, et al. Articular cartilage: in vivo diffusion-tensor imaging. Radiology. 2012;262(2):550–9.

    Article  PubMed  Google Scholar 

  46. Li X, Benjamin C, Link TM, et al. In vivo T-1 rho arid T-2 mapping of articular cartilage in osteoarthritis of the knee using 3T MRI. Osteoarthr Cartil. 2007;15(7):789–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Holtzman DJ, Theologis AA, Carballido-Gamio J, et al. T-1 rho and T-2 quantitative magnetic resonance imaging analysis of cartilage regeneration following microfracture and mosaicplasty cartilage resurfacing procedures. J Magn Reson Imaging. 2010;32(4):914–23.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Regatte RR, Akella S, Lonner JH, et al. T-1p relaxation mapping in human osteoarthritis (OA) cartilage: comparison of T-1p with T-2. J Magn Reson Imaging. 2006;23(4):547–53.

    Article  PubMed  Google Scholar 

  49. Borthakur A, Mellon E, Niyogi S, et al. Sodium and T-1 rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed. 2006;19(7):781–821.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ye Yang for his comments on the manuscript and Dongling Yang for her advice on statistics.

Conflict of interest

All the authors have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, H., Li, H., Hua, Y. et al. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings. Skeletal Radiol 44, 393–402 (2015). https://doi.org/10.1007/s00256-014-2062-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-014-2062-8

Keywords

Navigation