Skip to main content
Log in

High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A hyperthermostable xylanase XYN10B from Thermotoga maritima (PDB code 1VBR, GenBank accession number KR078269) was subjected to site-directed and error-prone PCR mutagenesis. From the selected five mutants, the two site-directed mutants (F806H and F806V) showed a 3.3–3.5-fold improved enzyme half-life at 100 °C. The mutant XYNA generated by error-prone PCR showed slightly improved stability at 100 °C and a lower Km. In XYNB and XYNC, the additional mutations over XYNA decreased the thermostability and temperature optimum, while elevating the Km. In XYNC, two large side-chains were introduced into the protein’s interior. Micro-differential scanning calorimetry (DSC) showed that the melting temperature (Tm) dropped in XYNB and XYNC from 104.9 °C to 93.7 °C and 78.6 °C, respectively. The detrimental mutations showed that extremely thermostable enzymes can tolerate quite radical mutations in the protein’s interior and still retain high thermostability. The analysis of mutations (F806H and F806V) in a hydrophobic area lining the substrate-binding region indicated that active site hydrophobicity is important for high activity at extreme temperatures. Although polar His at 806 provided higher stability, the hydrophobic Phe at 806 provided higher activity than His. This study generates an understanding of how extreme thermostability and high activity are formed in GH10 xylanases.

Key points

• Characterization and molecular dynamics simulations of TmXYN10B and its mutants

• Explanation of structural stability of GH10 xylanase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  • Basit A, Liu J, Rahim K, Jiang W, Lou H (2018) Thermophilic xylanases: from bench to bottle. Crit Rev Biotechnol 38:989–1002

    Article  CAS  PubMed  Google Scholar 

  • Bhalla A, Bansal N, Kumar S, Bischoff KM, Sani RK (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565

    Article  CAS  PubMed  Google Scholar 

  • Camilloni C, Bonetti D, Morrone A, Giri R, Dobson CM, Brunori M, Gianni S, Vendruscolo M (2016) Towards a structural biology of the hydrophobic effect in protein folding. Sci Rep 6:28285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary R, Kuthiala T, Singh G, Rarotra S, Kaur A, Arya SK, Kumar P (2021) Current status of xylanase for biofuel production: a review on classification and characterization. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-01948-2

  • Chawachart N, Anbarasan S, Turunen S, Li H, Khanongnuch C, Hummel M, Sixta H, Granstrom T, Lumyong S, Turunen O (2014) Thermal behaviour and tolerance to ionic liquid [emim]OAc in GH10 xylanase from Thermoascus aurantiacus SL16W. Extremophiles 18:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  PubMed  Google Scholar 

  • Denisov VP, Schlessman JL, Garcia-Moreno EB, Halle B (2004) Stabilization of internal charges in a protein: water penetration or conformational change? Biophys J 87:3982–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dougherty RC (1998) Temperature and pressure dependence of hydrogen bond strength: a perturbation molecular orbital approach. J Chem Phys 109:7372–7378

    Article  CAS  Google Scholar 

  • Dumon C, Varvak A, Wall MA, Flint JE, Lewis RJ, Lakey JH, Morland C, Luginbuhl P, Healey S, Todaro T, DeSantis G, Sun M, Parra-Gessert L, Tan X, Weiner DP, Gilbert HJ (2008) Engineering hyperthermostability into a GH11 xylanase is mediated by subtle changes to protein structure. J Biol Chem 283:22557–22564

    Article  CAS  PubMed  Google Scholar 

  • Ericsson UB, Hallberg BM, Detitta GT, Dekker N, Nordlund P (2006) Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal Biochem 357:289–298

    Article  CAS  PubMed  Google Scholar 

  • Gromiha MM, Pathak MC, Saraboji K, Ortlund EA, Gaucher EA (2013) Hydrophobic environment is a key factor for the stability of thermophilic proteins. Proteins 81:715–721

    Article  CAS  PubMed  Google Scholar 

  • Hämäläinen J, Granström T, Mollerup F, Wang Y, Xiong H, Turunen O (2016) Effect of enzymatic high temperature prehydrolysis on the subsequent cellulose hydrolysis of steam-pretreated spruce in high solids concentration. J Chem Technol Biotechnol 91:1844–1852

    Article  Google Scholar 

  • Hebal H, Parviainen A, Anbarasan S, Li H, Makkonen L, Bankar S, King AWT, Kilpeläinen I, Benallaoua S, Turunen O (2020) Inhibition of hyperthermostable xylanases by superbase ionic liquids. Process Biochem 95:148–156

    Article  CAS  Google Scholar 

  • Hebal H, Boucherba N, Binay B, Turunen O (2021) Activity and stability of hyperthermostable cellulases and xylanases in ionic liquids. Biocatal Biotransformation 39:242–259

    Article  CAS  Google Scholar 

  • Ihsanawati KT, Kaneko T, Morokuma C, Yatsunami R, Sato T, Nakamura S, Tanaka N (2005) Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins 61:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Johnson RJ, Savas CJ, Kartje Z, Hoops GC (2014) Rapid and adaptable measurement of protein thermal stability by differential scanning fluorimetry: updating a common biochemical laboratory experiment. J Chem Educ 91:1077–1080

    Article  CAS  Google Scholar 

  • Kamerzell TJ, Middaugh CR (2008) The complex inter-relationships between protein flexibility and stability. J Pharm Sci 97:3494–3517

    Article  CAS  PubMed  Google Scholar 

  • Kashif A, Tran LH, Jang SH, Lee CW (2017) Roles of active-site aromatic residues in cold adaptation of Sphingomonas glacialis esterase EstSP1. ACS Omega 2:8760–8769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katewadee B, Penchit C, Pattanop K, Verawat C (2021) Enhancement of catalytic performance of a metagenome-derived thermophilic oligosaccharide-specific xylanase by binding module removal and random mutagenesis. J Biosci Bioeng 131:13–19

    Article  Google Scholar 

  • Kumar V, Dangi AK, Shukla P (2018) Engineering thermostable microbial xylanases toward its industrial applications. Mol Biotechnol 60:226–235

    Article  CAS  PubMed  Google Scholar 

  • Lai Z, Zhou C, Ma X, Xue Y, Ma Y (2021) Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. Int J Biol Macromol 170:164–177

    Article  CAS  PubMed  Google Scholar 

  • Li H, Kankaanpää A, Xiong H, Hummel M, Sixta H, Ojamo H, Turunen O (2013) Thermostabilization of extremophilic Dictyoglomus thermophilum GH11 xylanase by an N-terminal disulfide bridge and the effect of ionic liquid [emim]OAc on the enzymatic performance. Enzym Microb Technol 53:414–419

    Article  Google Scholar 

  • Li G, Fang X, Su F, Chen Y, Xu L, Yan Y (2018) Enhancing the thermostability of Rhizomucor miehei lipase with a limited screening library by rational-design point mutations and disulfide bonds. Appl Environ Microbiol 84:e02129–e02117

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y, Wan Q, Zhang R (2021) Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Appl Microbiol Biotechnol 105:4561–4576

    Article  CAS  PubMed  Google Scholar 

  • Lim SJ, Oslan SN (2021) Native to designed: microbial α-amylases for industrial applications. PeerJ 9:e11315

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyazaki K, Takenouchi M, Kondo H, Noro N, Suzuki M, Tsuda S (2006) Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J Biol Chem 281:10236–10242

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Tsukada T, Auer S, Furuta T, Wada M, Koivula A, Igarashi K, Samejima M (2013) The tryptophan residue at the active site tunnel entrance of Trichoderma reesei cellobiohydrolase Cel7A is important for initiation of degradation of crystalline cellulose. J Biol Chem 288:13503–13510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prajapati AS, Pawar VA, Panchal KJ, Sudhir AP, Dave BR, Patel DH, Subramanian RB (2018) Effects of substrate binding site residue substitutions of xynA from Bacillus amyloliquefaciens on substrate specificity. BMC Biotechnol 18:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoichet BK, Baase WA, Kuroki R, Matthews BW (1995) A relationship between protein stability and protein function. Proc Natl Acad Sci U S A 92:452–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson HD, Haufler UR, Daniel RM (1991) An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J 277:413–417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song L, Tsang A, Sylvestre M (2015) Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids. Biotechnol Bioeng 112:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Taylor MP, Eley KL, Martin S, Tuffin M, Burton SG, Cowan DA (2009) Thermophilic ethanologenesis: future prospects for second-generation bioethanol production. Trends Biotechnol 27:398–405

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Liu S, Wang S, Wang L (2016) Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis. Sci Rep 6:23605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torktaz I, Karkhane AA, Hemmat J (2018) Rational engineering of Cel5E from Clostridium thermocellum to improve its thermal stability and catalytic activity. Appl Microbiol Biotechnol 102:8389–8402

    Article  CAS  PubMed  Google Scholar 

  • Tu T, Luo H, Meng K, Cheng Y, Ma R, Shi P, Huang H, Bai Y, Wang Y, Zhang L, Yao B (2015) Improvement in thermostability of an Achaetomium sp. strain Xz8 endopolygalacturonase via the optimization of charge-charge interactions. Appl Environ Microbiol 81:6938–6944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu T, Li Y, Luo Y, Wang Z, Wang Y, Luo H, Yao B (2018) A key residue for the substrate affinity enhancement of a thermophilic endo-polygalacturonase revealed by computational design. Appl Microbiol Biotechnol 102:4457–4466

    Article  CAS  PubMed  Google Scholar 

  • Turunen O, Jänis J, Fenel F, Leisola M (2004) Engineering the thermotolerance and pH optimum of family 11 xylanases by site-directed mutagenesis. Methods Enzymol 388:156–167

    Article  CAS  PubMed  Google Scholar 

  • van Dijk E, Hoogeveen A, Abeln S (2015) The hydrophobic temperature dependence of amino acids directly calculated from protein structures. PLoS Comput Biol 11:e1004277

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Fu Z, Huang H, Zhang H, Yao B, Xiong H, Turunen O (2012) Improved thermal performance of Thermomyces lanuginosus GH-11 xylanase by engineering of an N-terminal disulfide bridge. Bioresour Technol 112:275–279

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Luo H, Tian J, Turunen O, Huang H, Shi P, Hua H, Wang C, Wang S, Yao B (2014) Thermostablility improvement of a Streptomyces xylanase by introducing proline and glutamic acid residues. Appl Environ Microbiol 80:2158–2165

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Bai Y, Shu T, Fan P, Zhang H, Turunen O, Xiong H, Yu L (2020) Characterization of a versatile glycoside hydrolase Cel5M from Pectobacterium carotovorum HG-49 for ramie degumming. Text Res J 90:1602–1615

    Article  CAS  Google Scholar 

  • Winterhalter C, Liebl W (1995) Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Appl Environ Microbiol 61:1810–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Z, Zhao C, Huang Y, Ye F, Zhao G (2020) Molecular mechanism underlying the effects of temperature and pH on the size and surface charge of octenylsuccinated oat β-glucan aggregates. Carbohydr Polym 237:116115

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Han Z (2018) Understanding the positional binding and substrate interaction of a highly thermostable GH10 xylanase from Thermotoga maritima by molecular docking. Biomolecules 8:64

    Article  CAS  PubMed Central  Google Scholar 

  • Yang J, Ma T, Shang-guan F, Han Z (2020) Improving the catalytic activity of thermostable xylanase from Thermotoga maritima via mutagenesis of non-catalytic residues at glycone subsites. Enzym Microb Technol 139:109579

    Article  CAS  Google Scholar 

  • Yi Y, Xu S, Kovalevsky A, Zhang X, Liu D, Wan Q (2021) Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome. Appl Microbiol Biotechnol 105:7757–7767

    Article  CAS  PubMed  Google Scholar 

  • You C, Huang Q, Xue H, Xu Y, Lu H (2010) Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix patriciarum. Biotechnol Bioeng 105:861–870

    CAS  PubMed  Google Scholar 

  • Yu T, Anbarasan S, Wang Y, Telli K, Aslan AS, Su Z, Zhou Y, Zhang L, Iivonen P, Havukainen S, Mentunen T, Hummel M, Sixta H, Binay B, Turunen O, Xiong H (2016) Hyperthermostable Thermotoga maritima xylanase XYN10B shows high activity at high temperatures in the presence of biomass-dissolving hydrophilic ionic liquids. Extremophiles 20:515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the project (no. DY135-B2-07) from the China Ocean Mineral Resources R&D Association, Hubei Provincial Technical Innovation Program (no. 2018ABA093).

Author information

Authors and Affiliations

Authors

Contributions

YW, OT, and HX conceived and designed research. YW, JW, and ZZ conducted experiments. JY and OT analyzed data. YW, OT, and HX wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Ossi Turunen or Hairong Xiong.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, J., Zhang, Z. et al. High-temperature behavior of hyperthermostable Thermotoga maritima xylanase XYN10B after designed and evolved mutations. Appl Microbiol Biotechnol 106, 2017–2027 (2022). https://doi.org/10.1007/s00253-022-11823-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-022-11823-3

Keywords

Navigation