Skip to main content
Log in

Identification of a novel bifunctional uracil DNA glycosylase from Thermococcus barophilus Ch5

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Genomes of hyperthermophiles are facing a severe challenge due to increased deamination rates of cytosine induced by high temperature, which could be counteracted by base excision repair mediated by uracil DNA glycosylase (UDG) or other repair pathways. Our previous work has shown that the two UDGs (Tba UDG247 and Tba UDG194) encoded by the genome of the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 can remove uracil from DNA at high temperature. Herein, we provide evidence that Tba UDG247 is a novel bifunctional glycosylase which can excise uracil from DNA and further cleave the phosphodiester bo nd of the generated apurinic/apyrimidinic (AP) site, which has never been described to date. In addition to cleaving uracil-containing DNA, Tba UDG247 can also cleave AP-containing ssDNA although at lower efficiency, thereby suggesting that the enzyme might be involved in repair of AP site in DNA. Kinetic analyses showed that Tba UDG247 displays a faster rate for uracil excision than for AP cleavage, thus suggesting that cleaving AP site by the enzyme is a rate-limiting step for its bifunctionality. Phylogenetic analysis showed that Tba UDG247 is clustered on a separate branch distant from all the reported UDGs. Overall, we designated Tba UDG247 as the prototype of a novel family of bifunctional UDGs.

Key points

  • We first reported a novel DNA glycosylase with bifunctionality.

  • Tba UDG247 possesses an AP lyase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barbier E, Lagorce A, Hachemi A, Dutertre M, Gorlas A, Morand L, Saint-Pierre C, Ravanat JL, Douki T, Armengaud J, Gasparutto D, Confalonieri F, Breton J (2016) Oxidative DNA damage and repair in the radioresistant archaeon Thermococcus gammatolerans. Chem Res Toxicol 29:1796–1809

    Article  CAS  PubMed  Google Scholar 

  • Chung JH, Im EK, Park HY, Kwon JH, Lee S, Oh J, Hwang KC, Lee JH, Jang Y (2003) A novel uracil-DNA glycosylase family related to the helix-hairpin-helix DNA glycosylase superfamily. Nucleic Acids Res 31:2045–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly BA (2009) Recognition of deaminated bases by archaeal family-B DNA polymerases. Biochem Soc Trans 37:65–68

    Article  CAS  PubMed  Google Scholar 

  • Dionne I, Bell SD (2005) Characterization of an archaeal family 4 uracil DNA glycosylase and its interaction with PCNA and chromatin proteins. Biochem J 387:859–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faucher F, Doublie S, Jia Z (2012) 8-oxoguanine DNA glycosylases: one lesion, three subfamilies. Int J Mol Sci 13:6711–6729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gan Q, He M, Shi H, Yang Z, Oger P, Ran L, Zhang L (2020) Characterization of a Family IV uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 146:475–481

    Article  CAS  PubMed  Google Scholar 

  • Gehring AM, Zatopek KM, Burkhart BW, Potapov V, Santangelo TJ, Gardner AF (2020) Biochemical reconstitution and genetic characterization of the major oxidative damage base excision DNA repair pathway in Thermococcus kodakarensis. DNA Repair (Amst) 86:102767

    Article  CAS  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    Article  CAS  PubMed  Google Scholar 

  • Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci U S A 98:7928–7933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinks JA, Evans MC, De Miguel Y, Sartori AA, Jiricny J, Pearl LH (2002) An iron-sulfur cluster in the family 4 uracil-DNA glycosylases. J Biol Chem 277:16936–16940

    Article  CAS  PubMed  Google Scholar 

  • Hoseki J, Okamoto A, Masui R, Shibata T, Inoue Y, Yokoyama S, Kuramitsu S (2003) Crystal structure of a family 4 uracil-DNA glycosylase from Thermus thermophilus HB8. J Mol Biol 333:515–526

    Article  CAS  PubMed  Google Scholar 

  • Im EK, Han YS, Chung JH (2008) Functional changes in a novel uracil-DNA glycosylase determined by mutational analyses. Mikrobiologiia 77:644–650

    CAS  PubMed  Google Scholar 

  • Jacobs KL, Grogan DW (1997) Rates of spontaneous mutation in an archaeon from geothermal environments. J Bacteriol 179:3298–3303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai A, Higuchi S, Tsunoda M, Nakamura KT, Yamagata Y, Miyamoto S (2015) Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding. FEBS Lett 589:2675–2682

    Article  CAS  PubMed  Google Scholar 

  • Knaevelsrud I, Moen MN, Grosvik K, Haugland GT, Birkeland NK, Klungland A, Leiros I, Bjelland S (2010) The hyperthermophilic euryarchaeon Archaeoglobus fulgidus repairs uracil by single-nucleotide replacement. J Bacteriol 192:5755–5766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosaka H, Hoseki J, Nakagawa N, Kuramitsu S, Masui R (2007) Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. J Mol Biol 373:839–850

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsov NA, Fedorova OS (2020) Kinetic milestones of damage recognition by DNA glycosylases of the helix-hairpin-helix structural superfamily. Adv Exp Med Biol 1241:1–18

    Article  CAS  PubMed  Google Scholar 

  • Kwon KM, Kang SG, Sokolova TG, Cho SS, Kim YJ, Kim CH, Kwon ST (2016) Characterization of a family B DNA polymerase from Thermococcus barophilus Ch5 and its application for long and accurate PCR. Enzym Microb Technol 86:117–126

    Article  CAS  Google Scholar 

  • Lee HW, Dominy BN, Cao W (2011) New family of deamination repair enzymes in uracil-DNA glycosylase superfamily. J Biol Chem 286:31282–31287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin LB, Liu YF, Liu XP, Liu JH (2012) Biochemical characterization of uracil-DNA glycosylase from Pyrococcus furiosus. Chem Res Chinese U 28:477–482

    CAS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  CAS  Google Scholar 

  • Lindahl T, Nyberg B (1974) Heat-induced deamination of cytosine residues in deoxyribonucleic acid. Biochemistry 13:3405–3410

    Article  CAS  PubMed  Google Scholar 

  • Lingaraju GM, Prota AE, Winkler FK (2009) Mutational studies of Pa-AGOG DNA glycosylase from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. DNA Repair (Amst) 8:857–864

    Article  CAS  Google Scholar 

  • Liu XP, Liu JH (2011) Characterization of family IV UDG from Aeropyrum pernix and its application in hot-start PCR by family B DNA polymerase. PLoS One 6:e27248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Roy R (2001) Mutation at active site lysine 212 to arginine uncouples the glycosylase activity from the lyase activity of human endonuclease III. Biochemistry 40:13617–13622

    Article  CAS  PubMed  Google Scholar 

  • Marteinsson VT, Birrien JL, Reysenbach AL, Vernet M, Marie D, Gambacorta A, Messner P, Sleytr UB, Prieur D (1999) Thermococcus barophilus sp. nov., a new barophilic and hyperthermophilic archaeon isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Bacteriol 49:351–359

    Article  PubMed  Google Scholar 

  • Moen MN, Knvelsrud I, Haugland GT, Grosvik K, Birkeland NK, Klungland A, Bjelland S (2011) Uracil-DNA glycosylase of Thermoplasma acidophilum directs long-patch base excision repair, which is promoted by deoxynucleoside triphosphates and ATP/ADP, into short-patch repair. J Bacteriol 193:4495–4508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman DP, Chung SJ, Verdine GL (2003) Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry 42:1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Oger P, Sokolova TG, Kozhevnikova DA, Taranov EA, Vannier P, Lee HS, Kwon KK, Kang SG, Lee JH, Bonch-Osmolovskaya EA, Lebedinsky AV (2016) Complete genome sequence of the hyperthermophilic and piezophilic archaeon Thermococcus barophilus Ch5, capable of growth at the expense of hydrogenogenesis from carbon monoxide and formate. Genome Announc 4

  • Palud A, Villani G, L ' Haridon S, Querellou J, Raffin JP, Henneke G (2008) Intrinsic properties of the two replicative DNA polymerases of Pyrococcus abyssi in replicating abasic sites: possible role in DNA damage tolerance? Mol Microbiol 70:746–761

    Article  CAS  PubMed  Google Scholar 

  • Sandigursky M, Franklin WA (2000) Uracil-DNA glycosylase in the extreme thermophile Archaeoglobus fulgidus. J Biol Chem 275:19146–19149

    Article  CAS  PubMed  Google Scholar 

  • Sartori AA, Schär P, Fitz-Gibbon S, Miller JH, Jiricny J (2001) Biochemical characterization of uracil processing activities in the hyperthermophilic archaeon Pyrobaculum aerophilum. J Biol Chem 276:29979–29986

    Article  CAS  PubMed  Google Scholar 

  • Sartori AA, Fitz-Gibbon S, Yang HJ, Miller JH, Jiricny J (2002) A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J 21:3182–3191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sartori AA, Lingaraju GM, Hunziker P, Winkler FK, Jiricny J (2004) Pa-AGOG, the founding member of a new family of archaeal 8-oxoguanine DNA-glycosylases. Nucleic Acids Res 32:6531–6539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schormann N, Ricciardi R, Chattopadhyay D (2014) Uracil-DNA glycosylases-structural and functional perspectives on an essential family of DNA repair enzymes. Protein Sci 23:1667–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Gan Q, Jiang D, Wu Y, Yin Y, Hou H, Chen H, Xu Y, Miao L, Yang Z, Oger P (2019a) Biochemical characterization and mutational studies of a thermostable uracil DNA glycosylase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Int J Biol Macromol 134:846–855

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Huang Y, Gan Q, Rui M, Chen H, Tu C, Yang Z, Oger P, Zhang L (2019b) Biochemical characterization of a thermostable DNA ligase from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5. Appl Microbiol Biotechnol 103:3795–3806

    Article  CAS  PubMed  Google Scholar 

  • Shiraishi M, Ishino S, Yamagami T, Egashira Y, Kiyonari S, Ishino Y (2015) A novel endonuclease that may be responsible for damaged DNA base repair in Pyrococcus furiosus. Nucleic Acids Res 43:2853–2863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiraishi M, Mizutani K, Yamamoto J, Iwai S (2020) Mutational analysis of Thermococcus kodakarensis endonuclease III reveals the roles of evolutionarily conserved residues. DNA Repair (Amst) 90:102859

    Article  CAS  Google Scholar 

  • Shuttleworth G, Fogg MJ, Kurpiewski MR, Jen-Jacobson L, Connolly BA (2004) Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol 337:621–634

    Article  CAS  PubMed  Google Scholar 

  • Starkuviene V, Fritz HJ (2002) A novel type of uracil-DNA glycosylase mediating repair of hydrolytic DNA damage in the extremely thermophilic eubacterium Thermus thermophiles. Nucleic Acids Res 30:2097–2102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi GS, Wang WW, Cao WG, Wang FP, Liu XP (2017) Sulfolobus acidocaldarius UDG can remove dU from the RNA backbone: insight into the specific recognition of uracil linked with deoxyribose. Genes-Basel:8

  • Zhang L, Li Y, Shi H, Zhang D, Yang Z, Oger P, Zheng J (2019) Biochemical characterization and mutational studies of the 8-oxoguanine DNA glycosylase from the hyperthermophilic and radioresistant archaeon Thermococcus gammatolerans. Appl Microbiol Biotechnol 103:8021–8033

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Shi H, Gan Q, Wang Y, Wu M, Yang Z, Oger P, Zheng J (2020) An alternative pathway for repair of deaminated bases in DNA triggered by archaeal NucS endonuclease. DNA Repair (Amst) 85:102734

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20191219), High Level Talent Support Program of Yangzhou University, and the Academic Leader of Middle and Young People of Yangzhou University Grant.

Author information

Authors and Affiliations

Authors

Contributions

LZ, YG, and PO designed experiments; DJ, QG, HS, and LM performed experiments; LZ, YG, DJ, and QG analyzed data; LZ, YG, and PO wrote and revised the paper.

Corresponding authors

Correspondence to Likui Zhang, Yong Gong or Philippe Oger.

Ethics declarations

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Jiang, D., Gan, Q. et al. Identification of a novel bifunctional uracil DNA glycosylase from Thermococcus barophilus Ch5. Appl Microbiol Biotechnol 105, 5449–5460 (2021). https://doi.org/10.1007/s00253-021-11422-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-021-11422-8

Keywords

Navigation