Skip to main content
Log in

The research of aptamer biosensor technologies for detection of microorganism

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The activities and transmissions of microorganisms are closely related to human, and all kinds of diseases caused by pathogenic microorganisms have attracted attention in the world and brought many challenges to human health and public health. The traditional microbial detection technologies have characteristics of longer detection cycle and complicated processes, therefore, which can no longer meet the detection requirements in the field of public health. At present, it is the focus to develop and design a novel, rapid, and simple microbial detection method in the field of public health. Herein, this article summarized the development of aptamer biosensor technologies for detection of microorganism in the aspect of bacteria, viruses, and toxins in detail, including optical aptamer sensors such as fluorometry and colorimetry, electrochemical aptamer sensors, and other technologies combined with aptamer.

Key points

Aptamer biosensor is a good platform for microbial detection.

Aptamer biosensors include optical sensors and electrochemical sensors.

Aptamer sensors have been widely used in the detection of bacteria, viruses, and other microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaspour A, Norouz-Sarvestani F, Noori A, Soltani N (2015) Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of Staphylococcus aureus. Biosens Bioelectron 68:149–155

    CAS  PubMed  Google Scholar 

  • Afzal A, Mujahid A, Schirhagl R, Bajwa SZ, Latif U, Feroz S (2017) Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses. Chemosensors 5:10007–10032

    Google Scholar 

  • Alsina M, Blanch AR (1994) Improvement and update of a set of keys for biochemical identification of Vibrio species. J Appl Bacteriol 77:719–721

    CAS  Google Scholar 

  • Ara MN, Hyodo M, Ohga N, Hida K, Harashima H (2012) Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method. PLoS One 7:12

    Google Scholar 

  • Bagheryan Z, Raoof JB, Golabi M, Turner APF, Beni V (2016) Diazonium-based impedimetric aptasensor for the rapid label-free detection of Salmonella typhimurium in food sample. Biosens Bioelectron 80:566–573

    CAS  PubMed  Google Scholar 

  • Bazin I, Tria SA, Hayat A, Marty JL (2017) New biorecognition molecules in biosensors for the detection of toxins. Biosens Bioelectron 87:285–298

    CAS  PubMed  Google Scholar 

  • Borsa BA, Tuna BG, Hernandez FJ, Hernandez LI, Bayramoglu G, Arica MY, Ozalp VC (2016) Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosens Bioelectron 86:27–32

    CAS  PubMed  Google Scholar 

  • Chandola C, Kalme S, Casteleijn MG, Urtti A, Neerathilingam M (2016) Application of aptamers in diagnostics, drug-delivery and imaging. J Biosci 41:1–27

    Google Scholar 

  • Chen C, Zou Z, Chen L, Ji X, He Z (2016) Functionalized magnetic microparticle based colorimetric platform for influenza A virus detection. Nanotechnology 27:435102–435108

    PubMed  PubMed Central  Google Scholar 

  • Chen K, Liu B, Yu B, Zhong W, Lu Y, Zhang JN, Liao J, Liu J, Pu Y, Qiu LP, Zhang LQ, Liu HX, Tan WH (2017) Advances in the development of aptamer drug conjugates for targeted drug delivery. Wires Nanomed Nanobi 9:1438–1453

    Google Scholar 

  • Chen WJ, Chen Y, Wang ML, Chi YW (2018) Ultrasensitive chemiluminescence biosensors using nucleic acid-functionalized silver–cysteine nanowires as signal amplifying labels. Analyst 143:1575–1582

    CAS  PubMed  Google Scholar 

  • Chen C, Zhao PC, Ni MJ, Li CY, Xie YX, Fei JJ (2019) Temperature-induced amperometric glucose biosensor based on a poly(N-vinylcaprolactam)/graphene oxide composite film. Analyst 144:1960–1967

    CAS  PubMed  Google Scholar 

  • Cheng D, He C, Ai H, Huang Y, Lu N (2017) The possible role of Helicobacterpylori infection in non-alcoholic fatty liver disease. Front Microbiol 8:743–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu TC, Marks IIIJW, Lavery LA, Faulkner S, Rosenblum MG, Ellington AD, Levy M (2006) Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res 66:5989–5992

    CAS  PubMed  Google Scholar 

  • Diba FS, Kim S, Lee HJ (2015) Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips. Biosens Bioelectron 72:355–361

    CAS  PubMed  Google Scholar 

  • Dua P, Ren S, Lee SW, Kim JK, Shin H, Jeong OC, Kim S, Lee DK (2016) Cell-SELEX based identification of an RNA aptamer for Escherichia coli and its use in various detection formats. Mol Cells 39:807–813

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan N, Yan Y, Wu S, Wang Z (2016) Vibrio parahaemolyticus detection aptasensor using surface-enhanced Raman scattering. Food Contro 63:122–127

    CAS  Google Scholar 

  • Dümen E, Aydın A, Issa G (2015) Prevalence, serological typing and PCR sensitivity comparision of Salmonella Typhimurium, Salmonella Enteritidis and Salmonella spp. isolated from raw chicken carcasses. Kafkas Univ Vet Fak 21:653–658

    Google Scholar 

  • Elshafey R, Siaj M, Zourob M (2015) DNA aptamers selection and characterization for development of label free impedimetric aptasensor for neurotoxin anatoxin-a. Biosens Bioelectron 68:295–302

    CAS  PubMed  Google Scholar 

  • Fooladi AAI, Hedayati M, Aminb M, Aman J (2016) Applications and modifications of aptamers: potential tool for medical microbiology. Rev Med Microbiol 27:107–120

    Google Scholar 

  • Gasem MH, Dolmans WM, Isbandrio BB (1995) Culture of Salmonella typhi and Salmonella paratyphi from blood and bone marrow in suspected typhoid fever. Trop Geogr Med 47:164–167

    CAS  PubMed  Google Scholar 

  • GB 4789.4–2016 Microbiological examination of food examination of Salmonella[S]

  • Guo Y, Wang Y, Liu S, Yu J, Wang H, Wang Y, Huang JD (2016) Label-free and highly sensitive electrochemical detection of E. coli based on rolling circle amplifications coupled peroxidase-mimicking DNAzyme amplification. Biosens Bioelectron 75:315–319

    CAS  PubMed  Google Scholar 

  • Hamidi-Asl E, Dardenne F, Pilehvar S, Blust R, Wael KD (2016) Unique properties of core shell Ag@Au nanoparticles for the aptasensing of bacterial cells. Chemosensors 4:3390–3401

    Google Scholar 

  • Hao L, Gu H, Duan N, Wu S, Ma X, Xia Y, Wang HT, Wang ZP (2017) A chemiluminescent aptasensor based on rolling circle amplification andCo2+/N-(aminobutyl)-N-(ethylisoluminol) functional flowerlike gold nanoparticles for Salmonella typhimurium detection. Talanta 164:275–282

    CAS  PubMed  Google Scholar 

  • He L, Yang HJ, Tang JL, Liu ZD, Chen YY, Lu BH, He HC, Tang SJ, Sun YJ, Liu F, Ding XZ, Zhang YM, Hu SB, Xia LQ (2019) Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy. J Biol Eng 13:58–71

    PubMed  PubMed Central  Google Scholar 

  • Hong KL, Sooter LJ (2015) Single-stranded DNA aptamers against pathogens and toxins: identification and biosensing applications. Biomed Res Int 2015:318–349

    Google Scholar 

  • Huang Y, Chen X, Duan N, Wu S, Wang Z, Wei XL, Wang YF (2015) Selection and characterization of DNA aptamers against Staphylococcus Aureus enterotoxin C1. Food Chem 166:623–629

    CAS  PubMed  Google Scholar 

  • Hushegyi A, Pihíková D, Bertok T, Adam V, Kizek R, Tkac J (2016) Ultrasensitive detection of influenza viruses with a glycan-based impedimetric biosensor. Biosens Bioelectron 79:644–649

    CAS  PubMed  Google Scholar 

  • Hwang HJ, Ryu MY, Park CY, Ahn J, Park HG, Choi C, Ha SD, Park TJ, Park JP (2017) High sensitive and selective electrochemical biosensor: label-free detection of human norovirus using affinity peptide as molecular binder. Biosens Bioelectron 87:164–170

    CAS  PubMed  Google Scholar 

  • Idili A, Gerson JL, Parolo C, Kippin T, Plaxco KW (2019) An electrochemical aptamer-based sensor for the rapid and convenient measurement of L-tryptophan. Anal Bioanal Chem 411:4629–4635

    CAS  PubMed  PubMed Central  Google Scholar 

  • Indyk HE, Chetikam S, Gill BD, Wood JE, Woollard DC (2019) Development and application of an optical biosensor immunoassay for aflatoxin M1 in bovine milk. Food Anal Method 12:2630–2637

    Google Scholar 

  • Jiao XY, Zhou YB, Zhao D, Pang D, Wang CT, Du HW, Wen YQ, Zhang XJ (2019) An indirect ELISA-inspired dual-channel fluorescent immunoassay based on MPA-capped CdTe/ZnS QDs. Anal Bioanal Chem 411:5437–5444

    CAS  PubMed  Google Scholar 

  • Jin B, Wang SR, Lin M, Jin Y, Zhang S, Cui XY, Gong Y, Li A, Xu F, Lu TJ (2017) Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens Bioelectron 90:525–533

    CAS  PubMed  Google Scholar 

  • Karash S, Wang R, Kelso L, Lu H, Huang TJ, Li Y (2016) Rapid detection of avian influenza virus H5N1 in chicken tracheal samples using an impedance aptasensor with gold nanoparticles for signal amplification. J Virol Methods 236:147–156

    CAS  PubMed  Google Scholar 

  • Khang J, Kim D, Chung KW, Lee JH (2016) Chemiluminescent aptasensor capable of rapidly quantifying Escherichia coli O157: H7. Talanta 147:177–183

    CAS  PubMed  Google Scholar 

  • Kurt H, Yüce M, Hussain B, Budak H (2016) Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens Bioelectron 81:280–286

    CAS  PubMed  Google Scholar 

  • Lavu PS, Mondal B, Ramlal S, Murali HS, Batra HV (2016) Selection and characterization of aptamers using a modified whole cell bacterium SELEX for the detection of Salmonella enterica Serovar Typhimurium. ACS Comb Sci 18:92–301

    Google Scholar 

  • Li DJ, Wang JP, Wang RH, Li YB, Abi-Ghanem D, Berghman L, Hargis B, Lu HG (2011) A nanobeads amplified QCM immunosensor for the detection of avian influenza virus H5N1. Biosens Bioelectron 26:4146–4154

    CAS  PubMed  Google Scholar 

  • Li Q, Lu Z, Tan X, Xiao X, Wang P, Wu L, Shao K, Yin W, Han H (2017) Ultrasensitive detection of aflatoxin B1 by SERS aptasensor based on exonuclease-assisted recycling amplification. Biosens Bioelectron 97:59–64

    CAS  PubMed  Google Scholar 

  • Lian Y, He F, Wang H, Tong F (2015) A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus. Biosens Bioelectron 65:314–319

    CAS  PubMed  Google Scholar 

  • Lin CH, Pate DJ (1997) Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem Biol 4:817–832

    CAS  PubMed  Google Scholar 

  • Lin C, Liu ZS, Wang DX, Lin Li HP, Gong S, Li YS, Cui C, Wu ZC, Gao Y, Zhou Y, Ren HL, Lu SY (2015) Generation of internal-image functional aptamers of okadaic acid via magnetic-bead SELEX. Mar Drugs 13:7433–7445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Su X (2017) A novel fluorescent DNA sensor for ultrasensitive detection of Helicobacter pylori. Biosens Bioelectron 87:66–72

    CAS  PubMed  Google Scholar 

  • Lu YY, Zhang JX, Yi HX, Zhang Z, Zhang LW (2019) Screening of intestinal peristalsis-promoting probiotics based on a zebrafish model. Food Funct 10:2075–2082

    CAS  PubMed  Google Scholar 

  • Lum J, Wang R, Hargis B, Tung S, Bottje W, Lu HG, Li YB (2015) An impedance aptasensor with microfluidic chips for specific detection of H5N1 avian influenza virus. Sensors 15:18565–18578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv L, Cui C, Liang C, Quan W, Wang S, Guo Z (2016) Aptamer-based single-walled carbon nanohorn sensors for ochratoxin A detection. Food Control 60:296–301

    CAS  Google Scholar 

  • Lv L, Li D, Cui C, Zhao Y, Guo Z (2017) Nuclease-aided target recycling signal amplification strategy for ochratoxin A monitoring. Biosens Bioelectron 87:136–141

    CAS  PubMed  Google Scholar 

  • Ma X, Song L, Zhou N, Xia Y, Wang Z (2017) A novel aptasensor for the colorimetric detection of S. typhimurium based on gold nanoparticles. Int J Food Microbiol 245:1–5

    CAS  PubMed  Google Scholar 

  • Mccormick BA, Miller SI, Carnes D, Madara JL (1996) Transepithelial signaling to neutrophils by Salmonellae: a novel virulence mechanism for gastroenteritis. Infect Immun 63:2302–2309

    Google Scholar 

  • Mercier MC, Dontenwill M, Choulier L (2017) Selection of nucleic acid aptamers targeting tumor cell-surface protein biomarkers. Cancers 9:3390–3423

    Google Scholar 

  • Mokhtarzadeh A, Tabarzad M, Ranjbari J, Guardia MDL, Hejazi M, Ramezani M (2016) Aptamers as smart ligands for nano-carriers targeting. Trac Trend Anal Chem 82:316–327

    CAS  Google Scholar 

  • Mondal B, Ramlal S, Lavu PSR, Murali HS, Batra HV (2015) A combinatorial systematic evolution of ligands by exponential enrichment method for selection of aptamer against protein targets. Appl Microbiol Biotechnol 99:9791–9803

    CAS  PubMed  Google Scholar 

  • Moon J, Kim G, Park SB, Lim J, Mo C (2015) Comparison of whole-cell SELEX methods for the identification of Staphylococcus Aureus-specific DNA aptamers. Sensors 15:8884–8897

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mosing RK, Mendonsa SD, Bowser MT (2005) Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem 77:6107–6112

    CAS  PubMed  Google Scholar 

  • Nguyen VT, Seo HB, Kim BC, Kim SK, Song CS, Gu MB (2016) Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron 86:293–300

    CAS  PubMed  Google Scholar 

  • Nguyen LTN, Chan YP, Jong PP (2018) Synergistic molecular assembly of an aptamer and surfactant on gold nanoparticles for the colorimetric detection of trace levels of As3+ ions in real samples. New J Chem 42:11530–11538

    Google Scholar 

  • Pang Y, Rong Z, Wang J, Xiao R, Wang S (2015) A fluorescent aptasensor for H5N1 influenza virus detection based-onthe core–shell nanoparticles metal-enhanced fluorescence (MEF). Biosens Bioelectron 66:527–532

    CAS  PubMed  Google Scholar 

  • Pashazadeh P, Mokhtarzadeh A, Hasanzadeh M, Hejazi M, Hashemi M, Guardia M (2017) Nano-materials for use in sensing of Salmonella infections: recent advances. Biosens Bioelectron 87:1050–1064

    CAS  PubMed  Google Scholar 

  • Pfeiffer F, Mayer G (2016) Selection and biosensor application of aptamers for small molecules. Front Chem 4:25–50

    PubMed  PubMed Central  Google Scholar 

  • Prandi IG, Ramalho TC, França TCC (2019) Esterase 2 as a fluorescent biosensor for the detection of organophosphorus compounds: docking and electronic insights from molecular dynamics. Mol Simulat 45:1432–1436

    CAS  Google Scholar 

  • Quintela IA, Reyes BG, Lin CS, Wu VCH (2015) Simultaneous direct detection of Shiga-toxin producing Escherichia coli (STEC) strains by optical biosensing with oligonucleotide-functionalized gold nanoparticles. Nanoscale 7:2417–2426

    CAS  PubMed  Google Scholar 

  • Rahman MRT, Lou Z, Wang H, Ai L (2015) Aptamer immobilized magnetoelastic sensor for the determination of Staphylococcus aureus. Anal Lett 48:2414–2422

    CAS  Google Scholar 

  • Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54:165–176

    CAS  PubMed  Google Scholar 

  • Rhouati A, Catanante G, Nunes G, Hayat A, Marty JL (2016) Label-free aptasensors for the detection of mycotoxins. Sensors 16:2178–2199

    PubMed Central  Google Scholar 

  • Ruscito A, DeRosa M (2016) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4:3389–3403

    Google Scholar 

  • Ruscito A, Smith M, GouDreau DN, Derosa MC (2016) Current status and future prospects for aptamer-based mycotoxin detection. J AOAC Int 99:865–877

    CAS  PubMed  Google Scholar 

  • Sakyi SA, Aboagye SY, Otchere ID, Liao AM, Caltagirone TG, Yeboah-Manu D (2016) RNA aptamer that specifically binds to mycolactone and serves as a diagnostic tool for diagnosis of buruli ulcer. PLoS Negl Trop Dis 10:4950–4963

    Google Scholar 

  • Schax E, Lönne M, Scheper T, Belkin S, Walter JG (2015) Aptamer-based depletion of small molecular contaminants: A case study using ochratoxin A. Biotechnol Bioproc E 20:1016–1025

    CAS  Google Scholar 

  • Seok KY, Ahmad NH, Bock GM (2016) Aptamer-based nanobiosensors. Biosens Bioelectron 76:2–19

    Google Scholar 

  • Sharma A, Catanante G, Hayat A, Istamboulie G, Reje IB, Bhand S, Marty JL (2016) Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta 158:35–41

    CAS  PubMed  Google Scholar 

  • Sharma TK, Bruno JG, Dhiman A (2017) ABCs of DNA aptamer and related assay development. Biotechnol Adv 35:275–301

    CAS  PubMed  Google Scholar 

  • Song MS, Sekhon SS, Shin WR, Kim HC, Min J, Ahn JY, Kim YH (2017) Detecting and discriminating Shigella sonnei using an aptamer-based fluorescent biosensor platform. Molecules 22:825–837

    PubMed Central  Google Scholar 

  • Tabarzad M, Jafari M (2016) Trends in the design and development of specific aptamers against peptides and proteins. Protein J 35:81–99

    CAS  PubMed  Google Scholar 

  • Takeuchi N, Segawa S, Ishiwada N, Ohkusu M, Tsuchida S, Satoh M, Matsushita K, Nomura F (2018) Capsular serotyping of Haemophilus influenzae by using matrix-associated laser desorption ionization-time of flight mass spectrometry. J Infect Chemother 24:510–514

    CAS  PubMed  Google Scholar 

  • Tang M, Wei JY, Du HH, Zhang JZ, Yang DC, Peng YY (2015) Synthesis of an artificial antigen and preparation of a polyclonal antibody for the sensitive determination of phthalate esters by enzyme linked immunoassay. Anal Methods 7:3402–3410

    CAS  Google Scholar 

  • Templier V, Roux A, Roupioz Y, Livache T (2016) Ligands for label-free detection of whole bacteria on biosensors: a review. Trend Anal Chem 79:71–79

    CAS  Google Scholar 

  • Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li BG (2016) Aptamer-based technologies in foodborne pathogen detection. Front Microbiol 7:1–11

    Google Scholar 

  • Tseng Y, Wang C, Chang C, Lee G (2016) Integrated microfluidic system for rapid detection of influenza H1N1virus using a sandwich-based aptamer assay. Biosens Bioelectron 82:105–111

    CAS  PubMed  Google Scholar 

  • Wang C, Chang C, Lee G (2016) Integrated microfluidic device using a single universal aptamer to detect multiple types of influenza viruses. Biosens Bioelectron 86:247–254

    CAS  PubMed  Google Scholar 

  • Wang R, Wang L, Callaway ZT, Lu H, Huang TJ, Li Y (2017) A nanowell-based QCM aptasensor for rapid and sensitive detection of avian influenza virus. Sensor Actuat B Chem 240:934–940

    CAS  Google Scholar 

  • Wu S, Wang Y, Duan N, Ma H, Wang Z (2015) Colorimetric aptasensor based on enzyme for the detection of Vibrio parahemolyticus. J Agric Food Chem 63:7849–7854

    CAS  PubMed  Google Scholar 

  • Wu SJ, Duan N, Gu H, Hao L, Ye H, Gong WH, Wang ZP (2016) A review of the methods for detection of Staphylococcus aureus enterotoxins. Toxins 8:176–196

    PubMed Central  Google Scholar 

  • Wu MS, Xu N, Qiao JT, Chen JH, Jin LS (2019) Bipolar electrode-electrochemiluminescence (ECL) biosensor based on a hybridization chain reaction. Analyst 144:4633–4638

    CAS  PubMed  Google Scholar 

  • Wu P, Li S, Ye XS, Ning BA, Bai JL, Peng Y, Li L, Han T, Zhou HY, Gao ZX, Ding P (2020) Cu/Au/Pt trimetallic nanoparticles coated with DNA hydrogel as target-responsive and signal-amplification material for sensitive detection of microcystin-LR. Anal Chim Acta 1134:96–105

    CAS  PubMed  Google Scholar 

  • Xiao P, Lv XF, Deng YL (2012) Immobilization of chymotrypsin on silica beads based on high affinity and specificity aptamer and its applications. Anal Lett 45:1264–1273

    CAS  Google Scholar 

  • Yang D, Liu X, Zhou Y, Luo L, Zhang J, Huang A, Mao QM, Chen X, Tang L (2017) Aptamer-based biosensors for detection of lead(II)ion: a review. Anal Methods 9:1976–1990

    CAS  Google Scholar 

  • Yetisen AK, Moreddu R, Seifi S, Jiang N, Vega K, Dong XC, Dong J, Butt H, Jakobi M, Elsner M, Koch AW (2019) Dermal tattoo biosensors for colorimetric metabolite detection. Angew Chem Int Ed Engl 58:10506–10513

    CAS  PubMed  Google Scholar 

  • Yi JC, Wu P, Li GY, Xiao W, Li L, He YY, Ding P, Chen CM (2019) A composite prepared from carboxymethyl chitosan and aptamer-modified gold nanoparticles for the colorimetric determination of Salmonella typhimurium. Microchim Acta 186:711

    Google Scholar 

  • Zhang H, Zhou L, Zhu Z, Yang C (2016) Recent progress in aptamer-based functional probes for bioanalysis and biomedicine. Chemistry 47:9886–9900

    Google Scholar 

  • Zhao XH, Lin CW, Wang J, Oh DH (2014) Advances in rapid detection methods for foodborne pathogens. J Microbiol Biotechnol 24:297–312

    CAS  PubMed  Google Scholar 

  • Zhao G, Ding J, Yu H, Yin T, Qin W (2016) Potentiometric aptasensing of Vibrio alginolyticus based on DNA nanostructure-modified magnetic beads. Sensors 16:2052–2061

    PubMed Central  Google Scholar 

  • Zhu Z, Feng M, Zuo L, Zhu Z, Wang F, Chen L, Li JH, Shan GZ, Luo SZ (2015) An aptamer based surface plasmon resonance biosensor for the detection of ochratoxin A in wine and peanut oil. Biosens Bioelectron 65:320–326

    CAS  PubMed  Google Scholar 

  • Zong Y, Liu F, Zhang Y, Zhan T, He Y, Hun X (2016) Signal amplification technology based on entropy-driven molecular switch for ultrasensitive electrochemical determination of DNA and Salmonella typhimurium. Sensor Actuat B Chem 225:420–427

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China under Grant [21676305] and Food and Drug Safety Science and Technology projects of Hunan Food and Drug Administration [R201704].

Author information

Authors and Affiliations

Authors

Contributions

DP conceived the ideas and concepts of the manuscript. All authors wrote, reviewed, and approved the manuscript.

Corresponding authors

Correspondence to Ping Ding or Tianhan Kai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, J., Xiao, W., Li, G. et al. The research of aptamer biosensor technologies for detection of microorganism. Appl Microbiol Biotechnol 104, 9877–9890 (2020). https://doi.org/10.1007/s00253-020-10940-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10940-1

Keywords

Navigation