Skip to main content
Log in

An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel β-glucosidase, BglD1 with high β-galactosidase and transglycosidation activities, was screened and cloned from the deep-sea bacterium Bacillus sp. D1. BglD1 exhibited the maximal β-glucosidase and β-galactosidase activities at 55–60 °C and pH 5.5–6.0. The enzyme maintained approximately 50% of its original activity at 35 °C and pH 6.0 after 120-h incubation. When applied to synthesize galacto-oligosaccharides (GOS), BglD1 generated 118.3 g/L GOS (33.8% (w/w)) from 350 g/L lactose, with trisaccharide Gal-β(1 → 3)-Lac and disaccharide Gal-β(1 → 4)-Gal as the main components. Furthermore, BglD1 could hydrolyze lactose in milk and produce GOS simultaneously. Using milk as the substrate, BglD1 hydrolyzed 88.5% lactose and produced 3.3 g/L GOS after incubation at 30 °C for 1 h. To improve the transglycosidation activity, a mutant BglD1:E224T was generated based on the semi-rational design. The GOS yield of BglD1:E224T was 11.5% higher than that of BglD1 when using lactose solution as the substrate. Thus, BglD1 and the mutant could be used as beneficial alternatives of the existing β-galactosidases for the production of GOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akiyama K, Takase M, Horikoshi K, Okonogi S (2001) Production of galactooligosaccharides from lactose using a β-glucosidase from Thermus sp. Z-1. Biosci Biotechnol Biochem 65(2):438–441

    CAS  PubMed  Google Scholar 

  • Arreola SL, Intanon M, Suljic J, Kittl R, Pham NH, Kosma P, Haltrich D, Nguyen TH (2014) Two β-galactosidases from the human isolate Bifidobacterium breve DSM 20213: molecular cloning and expression, biochemical characterization and synthesis of galacto-oligosaccharides. PLoS One 9(8):e104056

    PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254

    CAS  PubMed  Google Scholar 

  • Cao LC, Wang ZJ, Ren GH, Kong W, Li L, Xie W, Liu YH (2015) Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol Biofuels 8:202

    PubMed  PubMed Central  Google Scholar 

  • Chamoli S, Kumar P, Navani NK, Verma AK (2016) Secretory expression, characterization and docking study of glucose-tolerant β-glucosidase from B. subtilis. Int J Biol Macromol 85:425–433

    CAS  PubMed  Google Scholar 

  • Crespim E, Zanphorlin LM, Souza F, Diogo JA, Gazolla AC, Machado CB, Figueiredo F, Sousa AS, Nóbrega F, Pellizari VH, Murakami MT, Ruller R (2016) A novel cold-adapted and glucose-tolerant GH1 β-glucosidase from Exiguobacterium antarcticum B7. Int J Biol Macromol 82:375–380

    CAS  PubMed  Google Scholar 

  • Dai Z, Lyu W, Xiang X, Tang Y, Hu B, Ou S, Zeng X (2018) Immunomodulatory effects of enzymatic-synthesized alpha-galactooligosaccharides and evaluation of the structure-activity relationship. J Agric Food Chem 66(34):9070–9079

    CAS  PubMed  Google Scholar 

  • Depeint F, Tzortzis G, Vulevic J, I’Anson K, Gibson GR (2008) Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171. Am J Clin Nutr 87:785–791

    CAS  PubMed  Google Scholar 

  • Fang Z, FangW LJ, Hong Y, Peng H, Zhang X, Sun B, Xiao Y (2010) Cloning and characterization of a β-glucosidase from marine microbial metagenome with excellent glucose tolerance. J Microbiol Biotechnol 20(9):1351–1358

    CAS  PubMed  Google Scholar 

  • Fang W, Fang Z, Zhou P, Chang F, Hong Y, Zhang X, Peng H, Xiao Y (2012) Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One 7(11):e50312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fang W, Yang Y, Zhang X, Yin Q, Zhang X, Wang X, Fang Z, Xiao Y (2016) Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. J Biotechnol 227:64–71

    CAS  PubMed  Google Scholar 

  • Feng HY, Drone J, Hoffmann L, Tran V, Tellier C, Rabiller C, Dion M (2005) Converting a β-glycosidase into a β-transglycosidase by directed evolution. J Biol Chem 280(44):37088–37097

    CAS  PubMed  Google Scholar 

  • Frenzel M, Zerge K, Clawin-Rädecker I, Lorenzen PC (2015) Comparison of the galacto-oligosaccharide forming activity of different β-galactosidases. LWT-Food Sci Technol 60(2):1068–1071

    CAS  Google Scholar 

  • Geiger B, Nguyen HM, Wenig S, Nguyen HA, Lorenz C, Kittl R, Mathiesen G, Eijsink VG, Haltrich D, Nguyen TH (2016) From by-product to valuable components: efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochem Eng J 116:45–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes-Pepe ES, Machado Sierra EG, Pereira MR, Castellane TC, Lemos EG (2016) Bg10: a novel metagenomics alcohol-tolerant and glucose-stimulated GH1 β-glucosidase suitable for lactose-free milk preparation. PLoS One 11(12):e0167932

    PubMed  PubMed Central  Google Scholar 

  • Gosling A, Stevens GW, Barber AR, Kentish S, Gras SL (2011) Effect of the substrate concentration and water activity on the yield and rate of the transfer reaction of β-galactosidase from Bacillus circulans. J Agric Food Chem 59(7):3366–3372

    CAS  PubMed  Google Scholar 

  • Goulas T, Goulas A, Tzortzis G, Gibson GR (2009) Expression of four β-galactosidases from Bifidobacterium bifidum NCIMB41171 and their contribution on the hydrolysis and synthesis of galactooligosaccharides. Appl Microbiol Biotechnol 84(5):899–907

    CAS  PubMed  Google Scholar 

  • Gumerov VM, Rakitin AL, Mardanov AV, Ravin NV (2015) A novel highly thermostable multifunctional β-glycosidase from Crenarchaeon Acidilobus saccharovorans. Archaea 2015:978632

    PubMed  PubMed Central  Google Scholar 

  • Guo Y, Yan Q, Yang Y, Yang S, Liu Y, Jiang Z (2015) Expression and characterization of a novel β-glucosidase, with transglycosylation and exo-β-1,3-glucanase activities, from Rhizomucor miehei. Food Chem 175:431–438

    CAS  PubMed  Google Scholar 

  • Hakulinen N, Paavilainen S, Korpela T, Rouvinen J (2000) The crystal structure of β-glucosidase from Bacillus circulans sp. alkalophilus: ability to form long polymeric assemblies. J Struct Biol 129(1):69–79

    CAS  PubMed  Google Scholar 

  • Hassan N, Nguyen TH, Intanon M, Kori LD, Patel BK, Haltrich D, Divne C, Tan TC (2015) Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 99(4):1731–1744

    CAS  PubMed  Google Scholar 

  • Hassan N, Geiger B, Gandini R, Patel BK, Kittl R, Haltrich D, Nguyen TH, Divne C, Tan TC (2016) Engineering a thermostable Halothermothrix orenii β-glucosidase for improved galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 100(8):3533–3543

    CAS  PubMed  Google Scholar 

  • Huang X, Dai Y, Wu G, Shao Z, Zeng Q, Liu Z (2012) Cloning and biochemical characterization of a glucosidase from a marine bacterium Aeromonas sp. HC11e-3. World J Microbiol Biotechnol 28(12):3337–3344

    CAS  PubMed  Google Scholar 

  • Jeya M, Joo AR, Lee KM, Tiwari MK, Lee KM, Kim SH, Lee JK (2010) Characterization of β-glucosidase from a strain of Penicillium purpurogenum KJS506. Appl Microbiol Biotechnol 86:1473–1484

    CAS  PubMed  Google Scholar 

  • Juajun O, Nguyen TH, Maischberger T, Iqbal S, Haltrich D, Yamabhai M (2011) Cloning, purification, and characterization of β-galactosidase from Bacillus licheniformis DSM 13. Appl Microbiol Biotechnol 89(3):645–654

    CAS  PubMed  Google Scholar 

  • Karnaouri A, Topakas E, Paschos T, Taouki I, Christakopoulos P (2013) Cloning, expression and characterization of an ethanol tolerant GH3 β-glucosidase from Myceliophthora thermophila. PeerJ 1:e46

    PubMed  PubMed Central  Google Scholar 

  • Li D, Li X, Dang W, Tran PL, Park SH, Oh BC, Hong WS, Lee JS, Park KH (2013) Characterization and application of an acidophilic and thermostable β-glucosidase from Thermofilum pendens. J Biosci Bioeng 115(5):490e496

    Google Scholar 

  • Li Y, Arakawa G, Tokuda G, Watanabe H, Arioka M (2017) Heterologous expression in Pichia pastoris and characterization of a β-glucosidase from the xylophagous cockroach Panesthia angustipennis spadica displaying high specific activity for cellobiose. Enzym Microb Technol 97:104–113

    CAS  Google Scholar 

  • Liu Y, Chen Z, Jiang Z, Yan Q, Yang S (2017) Biochemical characterization of a novel β-galactosidase from Paenibacillus barengoltzii suitable for lactose hydrolysis and galactooligosaccharides synthesis. Int J Biol Macromol 104(Pt A):1055–1063

    CAS  PubMed  Google Scholar 

  • Lundemo P, Karlsson EN, Adlercreutz P (2017) Eliminating hydrolytic activity without affecting the transglycosylation of a GH1 β-glucosidase. Appl Microbiol Biotechnol 101(3):1121–1131

    CAS  PubMed  Google Scholar 

  • Mai Z, Yang J, Tian X, Li J, Zhang S (2013) Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine streptomycete. Appl Biochem Biotechnol 169(5):1512–1522

    CAS  PubMed  Google Scholar 

  • Mao X, Hong Y, Shao Z, Zhao Y, Liu Z (2010) A novel cold-active and alkali-stable β-glucosidase gene isolated from the marine bacterium Martelella mediterranea. Appl Biochem Biotechnol 162(8):2136–2148

    CAS  PubMed  Google Scholar 

  • Martin M, Vandermies M, Joyeux C, Martin R, Barbeyron T, Michel G, Vandenbol M (2016) Discovering novel enzymes by functional screening of plurigenomic libraries from alga-associated Flavobacteriia and Gammaproteobacteria. Microbiol Res 186-187:52–61

    CAS  PubMed  Google Scholar 

  • Matsuzawa T, Yao K (2017) Screening, identification, and characterization of a novel saccharide-stimulated β-glycosidase from a soil metagenomic library. Appl Microbiol Biotechnol 101(2):633–646

    CAS  PubMed  Google Scholar 

  • Matsuzawa T, Jo T, Uchiyama T, Manninen JA, Arakawa T, Miyazaki K, Fushinobu S, Yao K (2016) Crystal structure and identification of a key amino acid for glucose tolerance, substrate specificity, and transglycosylation activity of metagenomic β-glucosidase Td2F2. FEBS J 283(12):2340–2353

    CAS  PubMed  Google Scholar 

  • Morris G, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento CV, Souza F, Masui D, Leone F, Peralta R, Jorge J, Furriel R (2010) Purification and biochemical properties of a glucose-stimulated β-D-glucosidase produced by Humicola grisea var. thermoidea grown on sugarcane bagasse. J Microbiol 48(1):53–62

    CAS  PubMed  Google Scholar 

  • Nguyen TT, Nguyen HA, Arreola SL, Mlynek G, Djinović-Carugo K, Mathiesen G, Nguyen TH, Haltrich D (2012) Homodimeric β-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus DSM 20081: expression in Lactobacillus plantarum and biochemical characterization. J Agric Food Chem 60:1713–1721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Onishi N, Yokozeki K (1996) Gluco-oligosaccharide and galacto-oligosaccharide production by Rhodotorula minuta IFO879. J Ferment Bioeng 82(2):124–127

    CAS  Google Scholar 

  • Otieno DO (2010) Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr Rev Food Sci Food Saf 9(5):471–482

    CAS  PubMed  Google Scholar 

  • Petzelbauer I, Reiter A, Splechtna B, Kosma P, Nidetzky B (2000) Transgalactosylation by thermostable β-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Eur J Biochem 267:5055–5066

    CAS  PubMed  Google Scholar 

  • Placier G, Watzlawick H, Rabiller C, Mattes R (2009) Evolved β-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharide production. Appl Environ Microbiol 75(19):6312–6321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Colinas B, de Abreu MA, Fernandez-Arrojo L, de Beer R, Poveda A, Jimenez-Barbero J, Haltrich D, Ballesteros O, Fernandez-Lobato M, Plou FJ (2011) Production of galacto-oligosaccharides by the β-galactosidase from Kluyveromyces lactis: comparative analysis of permeabilized cells versus soluble enzyme. J Agric Food Chem 59(19):10477–10484

    CAS  PubMed  Google Scholar 

  • Rodriguez-Colinas B, Poveda A, Jimenez-Barbero J, Ballesteros AO, Plou FJ (2012) Galacto-oligosaccharide synthesis from lactose solution or skim milk using the β-galactosidase from Bacillus circulans. J Agric Food Chem 60(25):6391–6398

    CAS  PubMed  Google Scholar 

  • Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ (2014) Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–394

    CAS  PubMed  Google Scholar 

  • Souza F, Nascimento C, Rosa J, Masui D, Leone F, Jorge J, Furriel R, Chodi D, Leone F, Jorge J, Furriel R (2010) Purification and biochemical characterization of a mycelial glucose- and xylose-stimulated β-glucosidase from the thermophilic fungus Humicola insolens. Process Biochem 45:272–278

    CAS  Google Scholar 

  • Splechtna B, Nguyen TH, Steinbock M, Kulbe KD, Lorenz W, Haltrich D (2006) Production of prebiotic galacto-oligosaccharides from lactose using β-galactosidases from Lactobacillus reuteri. J Agric Food Chem 54(14):4999–5006

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Kentaro M, Katsuro Y (2013) Characterization of a novel β-glucosidase from a compost microbial metagenome with strong transglycosylation activity. J Biol Chem 288(25):18325–18334

    CAS  PubMed  PubMed Central  Google Scholar 

  • Usvalampi A, Maaheimo H, Tossavainen O, Frey AD (2018) Enzymatic synthesis of fucose-containing galacto-oligosaccharides using β-galactosidase and identification of novel disaccharide structures. Glycoconj J 35(1):31–40

    CAS  PubMed  Google Scholar 

  • Vera C, Guerrero C, Conejeros R, Illanes A (2012) Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym Microb Technol 50(3):188–194

    CAS  Google Scholar 

  • Yang S, Hua C, Yan Q, Yinan L, Jiang Z (2013) Biochemical properties of a novel glycoside hydrolase family 1 β-glucosidase (PtBglu1) from Paecilomyces thermophila expressed in Pichia pastoris. Carbohydr Polym 92:784–791

    CAS  PubMed  Google Scholar 

  • Yang Y, Zhang X, Yin Q, Fang W, Fang Z, Wang X, Zhang X, Xiao Y (2015) Mechanism of glucose tolerance and stimulation of GH1 β-glucosidases. Sci Rep 5:17296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Wang Q, Zhou Y, Li J, Gao R, Guo Z (2017) Engineering T. naphthophila β-glucosidase for enhanced synthesis of galactooligosaccharides by site-directed mutagenesis. Biochem Eng J 127:1–8

    CAS  Google Scholar 

  • Yang J, Gao R, Zhou Y, Anankanbil S, Li J, Xie G, Guo Z (2018) β-Glucosidase from Thermotoga naphthophila RKU-10 for exclusive synthesis of galactotrisaccharides: kinetics and thermodynamics insight into reaction mechanism. Food Chem 240:422–429

    CAS  PubMed  Google Scholar 

  • Yin H, Pijning T, Meng X, Dijkhuizen L, van Leeuwen SS (2017) Engineering of the Bacillus circulans β-galactosidase product specificity. Biochemistry 56(5):704–711

    CAS  PubMed  Google Scholar 

  • Zanoelo FF, Polizeli MM, Terenzi HF, Jorge JA (2004) β-Glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose. FEMS Microbiol Lett 240:137–143

    CAS  PubMed  Google Scholar 

  • Zhang S, Huang J, Hu R, Guo G, Shang X, Wu J (2017) Characterization of a new multifunctional β-glucosidase from Musca domestica. Biotechnol Lett 39(8):1219–1227

    CAS  PubMed  Google Scholar 

  • Zhao L, Zhou Y, Qin S, Qin P, Chu J, He B (2018) β-Galactosidase BMG without galactose and glucose inhibition: secretory expression in Bacillus subtilis and for synthesis of oligosaccharide. Int J Biol Macromol 120(Pt A):274–278

    CAS  PubMed  Google Scholar 

  • Zhu Y, Chen P, Bao Y, Men Y, Zeng Y, Yang J, Sun J, Sun Y (2016) Complete genome sequence and transcriptomic analysis of a novel marine strain Bacillus weihaiensis reveals the mechanism of brown algae degradation. Sci Rep 6:38248

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Ursula Kües (University of Goettingen, Goettingen, Germany) for constructive suggestions.

Funding

This work was financially supported by the National Key Research and Development Program (grant number: 2018YFC0311106) and the Chinese National Natural Science Foundation (grant number: 31870056).

Author information

Authors and Affiliations

Authors

Contributions

PD carried out the major experiments and helped to revise the manuscript. CM constructed the mutant of BglD1. YW screened the positive clones. JX and XT performed the docking analysis. XZ and YX performed the analysis of sequence and structure. XW and ZF polished the manuscript. WF wrote and edited the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zemin Fang or Wei Fang.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. BglD1 possessed high β-galactosidase and transglycosidation activities.

2. BglD1 synthesized GOS from high concentration lactose.

3. BglD1 hydrolyzed milk lactose and produced GOS simultaneously.

4. BglD1 was easy to be engineered for transglycosylation improvement.

Electronic supplementary material

ESM 1

(PDF 987 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Meng, C., Wu, Y. et al. An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 104, 4927–4943 (2020). https://doi.org/10.1007/s00253-020-10578-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-020-10578-z

Keywords

Navigation