Skip to main content
Log in

The role of ammonium oxidising bacteria (AOB) in ionic liquid 1-dodecylpyridinium chloride removal

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Ionic liquids (IL) have emerged as the next-generation “green” solvent that can replace traditional organic solvent due to properties such as high thermal stability and no vapour pressure. However, their increased usage inevitably allows them to find their way into the environment. The objective of this study was to evaluate the role of autotrophic ammonia-oxidising bacteria (AOB) in the potential removal of 1-dodecylpyridinium chloride ([DPy]+Cl) in both short- and long-term studies. In short-term batch experiments, it was observed that a notable amount of [DPy]+ can be removed by the AOB culture with the removal mechanism being biodegradation and absorption, with the latter playing a greater role. It was also found that [DPy]+ can be released back into the liquid phase when AOB’s preferred substrate, NH3, was present. In the long-term study, [DPy]+Cl was successfully biodegraded and a total of nine transformation products were identified. The biodegradation pathway was also proposed. This study demonstrated that [DPy]+Cl can be biological transformed by enriched AOB culture and the accumulation of the by-product did not show long-term negative impact on AOB activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrusci C, Palomar J, Pablos JL, Rodriguez F, Catalina F (2011) Efficient biodegradation of common ionic liquids by Sphingomonas paucimobilis bacterium. Green Chem 13(3):709–717

    Article  CAS  Google Scholar 

  • APHA (2012) Standard methods for examination of water and wastewater. American Public Health Association, Washington DC

    Google Scholar 

  • Arp DJ, Yeager CM, Hyman MR (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12(2):81–103

    Article  CAS  PubMed  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and co-oxidation by methanotrophs and nitrifiers. Microbiol Rev 53(1):68–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouquillon S, Courant T, Dean D, Gathergood N, Morrissey S, Pegot B, Scammells PJ, Singer RD (2007) Biodegradable ionic liquids: selected synthetic applications. Aust J Chem 60(11):843–847

    Article  CAS  Google Scholar 

  • Cho CW, Pham TPT, Jeon YC, Vijayaraghavan K, Choe WS, Yun YS (2007) Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Chemosphere 69(6):1003–1007

    Article  CAS  PubMed  Google Scholar 

  • Cho CW, Pham TPT, Kim S, Song MH, Chung YJ, Yun YS (2016) Three degradation pathways of 1-octyl-3-methylimidazolium cation by activated sludge from wastewater treatment process. Water Res 90:294–300

    Article  CAS  PubMed  Google Scholar 

  • Chubar N, Behrends T, Van Cappellen P (2008) Biosorption of metals (Cu2+, Zn2+) and anions (F, H2PO4 ) by viable and autoclaved cells of the Gram-negative bacterium Shewanella putrefaciens. Colloid Surf B-Biointerfaces 65(1):126–133

    Article  CAS  Google Scholar 

  • Docherty KM, Aiello SW, Buehler BK, Jones SE, Szymczyna BR, Walker KA (2015) Ionic liquid biodegradability depends on specific wastewater microbial consortia. Chemosphere 136:160–166

    Article  CAS  PubMed  Google Scholar 

  • Docherty KM, Dixon JK, Kulpa CF Jr (2007) Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation 18(4):481–493

    Article  CAS  PubMed  Google Scholar 

  • Docherty KM, Joyce MV, Kulacki KJ, Kulpa CF (2010) Microbial biodegradation and metabolite toxicity of three pyridinium-based cation ionic liquids. Green Chem 12(4):701–712

    Article  CAS  Google Scholar 

  • Docherty KM, Kulpa CF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7(4):185–189

    Article  CAS  Google Scholar 

  • Farooq A, Reinert L, Leveque JM, Papaiconomou N, Irfan N, Duclaux L (2012) Adsorption of ionic liquids onto activated carbons: effect of pH and temperature. Microporous Mesoporous Mater 158:55–63

    Article  CAS  Google Scholar 

  • Gathergood N, Garcia MT, Scammells PJ (2004) Biodegradable ionic liquids: part I. Concept, preliminary targets and evaluation. Green Chem 6(3):166–175

    Article  CAS  Google Scholar 

  • Guine V, Spadini L, Sarret G, Muris M, Delolme C, Gaudet JP, Martins JMF (2006) Zinc sorption to three gram-negative bacteria: combined titration, modeling, and EXAFS study. Environ Sci Technol 40(6):1806–1813

    Article  CAS  PubMed  Google Scholar 

  • Hezave AZ, Dorostkar S, Ayatollahi S, Nabipour M, Hemmateenejad B (2013) Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilib 360:139–145

    Article  CAS  Google Scholar 

  • Hough WL, Smiglak M, Rodriguez H, Swatloski RP, Spear SK, Daly DT, Pernak J, Grisel JE, Carliss RD, Soutullo MD, Davis JH Jr, Rogers RD (2007) The third evolution of ionic liquids: active pharmaceutical ingredients. New J Chem 31(8):1429–1436

    Article  CAS  Google Scholar 

  • Huang JJ, Kimura T (1973) Studies on adrenal steroid hydroxlases – oxidation-reduction properties of adrenal iron-sulfur protein (adrenodoxin). Biochemistry 12(3):406–409

    Article  CAS  PubMed  Google Scholar 

  • Huang RTW, Peng KC, Shih HN, Lin GH, Chang TF, Hsu SJ, Hsu TST, Lin IJB (2011) Antimicrobial properties of ethoxyether-functionalized imidazolium salts. Soft Matter 7(18):8392–8400

    Article  CAS  Google Scholar 

  • Jing CQ, Mu LM, Ren TF, Li BN, Chen SJ, Nan WB (2014) Effect of 1-octyl-3-methylimidazolium chloride on cell replication and membrane permeability of Escherichia coli DH5 alpha. Bull Environ Contam Toxicol 93(1):60–63

    Article  CAS  PubMed  Google Scholar 

  • Kassotaki E, Buttiglieri G, Ferrando-Climent L, Rodriguez-Roda I, Pijuan M (2016) Enhanced sulfamethoxazole degradation through ammonia oxidizing bacteria co-metabolism and fate of transformation products. Water Res 94:111–119

    Article  CAS  PubMed  Google Scholar 

  • Kawano R, Matsui H, Matsuyama C, Sato A, Susan M, Tanabe N, Watanabe M (2004) High performance dye-sensitized solar cells using ionic liquids as their electrolytes. J Photochem Photobiol A Chem 164(1–3):87–92

    Article  CAS  Google Scholar 

  • Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluids 43(1):150–180

    Article  CAS  Google Scholar 

  • Kim JY, Ryu K, Kim EJ, Choe WS, Cha GC, Yoo IK (2007) Degradation of bisphenol A and nonylphenol by nitrifying activated sludge. Process Biochem 42(10):1470–1474

    Article  CAS  Google Scholar 

  • Lemus J, Palomar J, Gilarranz MA, Rodriguez JJ (2013) On the kinetics of ionic liquid adsorption onto activated carbons from aqueous solution. Ind Eng Chem Res 52(8):2969–2976

    Article  CAS  Google Scholar 

  • Li XH, Zhao JG, Li QH, Wang LF, Tsang SC (2007) Ultrasonic chemical oxidative degradations of 1,3-dialkylimidazolium ionic liquids and their mechanistic elucidations. Dalton Trans(19):1875–1880

  • Majewsky M, Wagner D, Delay M, Brase S, Yargeau V, Horn H (2014) Antibacterial activity of sulfamethoxazole transformation products (TPs): general relevance for sulfonamide TPs modified at the para position. Chem Res Toxicol 27(10):1821–1828

    Article  CAS  PubMed  Google Scholar 

  • Mihelj T, Tomasic V (2014) Thermal behavior of dodecylpyridinium-based surfactant salts with varied anionic constituent. J Dispers Sci Technol 35(4):581–592

    Article  CAS  Google Scholar 

  • Munro AW, Lindsay JG (1996) Bacterial cytochromes P-450. Mol Microbiol 20(6):1115–1125

    Article  CAS  PubMed  Google Scholar 

  • Neumann J, Grundmann O, Thoming J, Schulte M, Stolte S (2010) Anaerobic biodegradability of ionic liquid cations under denitrifying conditions. Green Chem 12(4):620–627

    Article  CAS  Google Scholar 

  • Neumann J, Steudte S, Cho C-W, Thoeming J, Stolte S (2014) Biodegradability of 27 pyrrolidinium, morpholinium, piperidinium, imidazolium and pyridinium ionic liquid cations under aerobic conditions. Green Chem 16(4):2174–2184

    Article  CAS  Google Scholar 

  • Osorio V, Sanchis J, Abad JL, Ginebreda A, Farre M, Perez S, Barcelo D (2016) Investigating the formation and toxicity of nitrogen transformation products of diclofenac and sulfamethoxazole in wastewater treatment plants. J Hazard Mater 309:157–164

    Article  CAS  PubMed  Google Scholar 

  • Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556(1):38–45

    Article  CAS  PubMed  Google Scholar 

  • Park J, Yamashita N, Wu GX, Tanaka H (2017) Removal of pharmaceuticals and personal care products by ammonia oxidizing bacteria acclimated in a membrane bioreactor: contributions of cometabolism and endogenous respiration. Sci Total Environ 605:18–25

    Article  CAS  PubMed  Google Scholar 

  • Pham TPT, Cho CW, Jeon CO, Chung YJ, Lee MW, Yun YS (2009) Identification of metabolites involved in the biodegradation of the ionic liquid 1-butyl-3-methylpyridinium bromide by activated sludge microorganisms. Environ Sci Technol 43(2):516–521

    Article  CAS  PubMed  Google Scholar 

  • Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37(1):123–150

    Article  CAS  PubMed  Google Scholar 

  • Romero A, Santos A, Tojo J, Rodriguez A (2008) Toxicity and biodegradability of imidazolium ionic liquids. J Hazard Mater 151(1):268–273

    Article  CAS  PubMed  Google Scholar 

  • Seki S, Kobayashi Y, Miyashiro H, Ohno Y, Usami A, Mita Y, Kihira N, Watanabe M, Terada N (2006) Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J Phys Chem B 110(21):10228–10230

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Fujisawa S, Nakai S, Hosomi M (2004) Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Res 38(9):2323–2330

    Article  CAS  Google Scholar 

  • Siedlecka EM, Mrozik W, Kaczynski Z, Stepnowski P (2008) Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system. J Hazard Mater 154(1–3):893–900

    Article  CAS  PubMed  Google Scholar 

  • Steudte S, Bemowsky S, Mahrova M, Bottin-Weber U, Tojo-Suarez E, Stepnowski P, Stolte S (2014) Toxicity and biodegradability of dicationic ionic liquids. RSC Adv 4(10):5198–5205

    Article  CAS  Google Scholar 

  • Stolte S, Abdulkarim S, Arning J, Blomeyer-Nienstedt A-K, Bottin-Weber U, Matzke M, Ranke J, Jastorff B, Thoeming J (2008) Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds. Green Chem 10(2):214–224

    Article  CAS  Google Scholar 

  • Stolte S, Matzke M, Arning J, Boeschen A, Pitner W-R, Welz-Biermann U, Jastorff B, Ranke J (2007) Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chem 9(11):1170–1179

    Article  CAS  Google Scholar 

  • Tran NH, Urase T, Kusakabe O (2009) The characteristics of enriched nitrifier culture in the degradation of selected pharmaceutically active compounds. J Hazard Mater 171(1–3):1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Trush MM, Semenyuta IV, Vdovenko SI, Rogalsky SP, Lobko EO, Metelytsia LO (2017) Synthesis, spectroscopic and molecular docking studies of imidazolium and pyridinium based ionic liquids with HSA as potential antimicrobial agents. J Mol Struct 1137:692–699

    Article  CAS  Google Scholar 

  • Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607(2):126–135

    Article  CAS  PubMed  Google Scholar 

  • Xu YF, Radjenovic J, Yuan ZG, Ni BJ (2017) Biodegradation of atenolol by an enriched nitrifying sludge: products and pathways. Chem Eng J 312:351–359

    Article  CAS  Google Scholar 

  • Xu YF, Yuan ZG, Ni BJ (2016) Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes. Sci Total Environ 566:796–805

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Yoo B, Shah JK, Zhu YX, Maginn EJ (2014) Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study. Soft Matter 10(43):8641–8651

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Wang H, Malhotra SV, Dodge CJ, Francis AJ (2010) Biodegradation of pyridinium-based ionic liquids by an axenic culture of soil Corynebacteria. Green Chem 12(5):851–858

    Article  CAS  Google Scholar 

  • Zhao DB, Wu M, Kou Y, Min E (2002) Ionic liquids: applications in catalysis. Catal Today 74(1–2):157–189

    Article  CAS  Google Scholar 

Download references

Funding

This study received funding support from the Nanyang Technological University start-up grant—anticipating and mitigating challenges in enhanced biotreatment processes—enhancement and global warming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 970 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, F.J.D., Zhou, Y. The role of ammonium oxidising bacteria (AOB) in ionic liquid 1-dodecylpyridinium chloride removal. Appl Microbiol Biotechnol 103, 4595–4604 (2019). https://doi.org/10.1007/s00253-019-09799-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09799-8

Keywords

Navigation