Skip to main content

Advertisement

Log in

Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

With global CO2 emissions at their highest in several years, mitigation and possibly reduction of greenhouse gas buildup and concomitant production of renewable fuel molecules for growing transportation fuel needs are urgent challenges for renewable energy scientists and engineers. Knallgas bacteria provide a biocatalyst platform for utilization of CO2 and production of diverse and some high-energy density biofuel molecules, requisite for drop-in transportation fuels. The most well-studied Knallgas bacterium, Ralstonia eutropha, has been engineered to produce n-butanol, isobutanol, and terpene molecules under chemolithoautotrophic conditions. There are other representatives of this group of bacteria that potentially have the capabilities for CO2-based fuel molecule synthesis. In principle, fermentative production of biofuel from CO2 could rival the “power-to-gas” (non-biological production of fuels using CO2 and H2) production methods. However, challenges remain for both methods in order to compete with currently priced petroleum-based fuels. With continued streamlining of processes and attention to Industrial Ecology principles, biofuel synthesis by Knallgas bacteria could represent a viable part of a nation’s energy portfolio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amils R (2014) Chemolithoautotroph. In: Gargaud M, Amils R, Cernicharo Quintillana J, Cleaves HJ, Irvine WM, Pinti D, Visco M (eds) Encyclopedia of astrobiology, 2nd edn. Springer, Berlin, Heidelberg

    Google Scholar 

  • Bailera M, Lisbona P, Romero LM, Espatolero S (2017) Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew Sustain Energy Rev 69:292–312

    Article  CAS  Google Scholar 

  • Bengelsdorf FR, Straub M, Dürre P (2013) Bacterial synthesis gas (syngas) fermentation. Environ Technol 34:1639–1651

    Article  CAS  PubMed  Google Scholar 

  • Bhujade R, Chidambaram M, Kumar A, Sapre A (2017) Algae to economically viable low-carbon-footprint oil. Annu Rev Chem Biomol Eng 8:335–357

    Article  CAS  PubMed  Google Scholar 

  • Brigham CJ, Gai C, Lu J, Speth DR, Worden RM, Sinskey AJ (2012a) Engineering Ralstonia eutropha for production of isobutanol from CO2, H2, and O2. In: Li JW (ed) Advanced biofuels and bioproducts. Springer, Germany, pp 1065–1090

    Google Scholar 

  • Brigham CJ, Kehail AA, Palmer JD (2016) Ralstonia eutropha and the production of value added products: metabolic background of the wild-type strain and its role as a diverse, genetically-engineered biocatalyst organism. Recent Adv Biotechnol:265–347

  • Brigham CJ, Speth DR, Rha C, Sinskey AJ (2012b) Whole genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol 78(22):8033–8044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgdorf T, Lenz O, Buhrke T, van der Linden E, Jones AK, Albracht SP, Friedrich B (2005) [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J Mol Microbiol Biotechnol 10:181–196

    Article  CAS  PubMed  Google Scholar 

  • Croce S, Wei Q, D’Imporzano G, Dong R, Adani F (2016) Anaerobic digestion of straw and corn stover: the effect of biological process optimization and pre-treatment on total bio-methane yield and energy performance. Biotechnol Adv 34:1289–1304

    Article  CAS  PubMed  Google Scholar 

  • Doud DFR, Holmes EC, Richter H, Molitor B, Jander G, Angenent LT (2017) Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol. Biotechnol Biofuels 10: 178–017–0864-3. eCollection 2017

  • Dürre P, Richard T (2011) Microbial energy conversion revisited. Curr Opin Biotechnol 22:309–311

    Article  CAS  PubMed  Google Scholar 

  • Fei Q, Fu R, Shang L, Brigham CJ, Chang HN (2014) Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 38:691–700

    Article  CAS  PubMed  Google Scholar 

  • Fukui T, Ohsawa K, Mifune J, Orita I, Nakamura S (2011) Evaluation of promoters for gene expression in polyhydroxyalkanoate-producing Cupriavidus necator H16. Appl Microbiol Biotechnol 89:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Ghimire A, Valentino S, Frunzo L, Pirozzi F, Lens PN, Esposito G (2016) Concomitant biohydrogen and poly-beta-hydroxybutyrate production from dark fermentation effluents by adapted Rhodobacter sphaeroides and mixed photofermentative cultures. Bioresour Technol 217:157–164

    Article  CAS  PubMed  Google Scholar 

  • Goetz M, Lefebvre J, Moers F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T (2016) Renewable power-to-gas: a technological and economic review. Renew Energy 85:1371–1390

    Article  CAS  Google Scholar 

  • Haas T, Poetter M, Schaffer S (2016) Fatty acid derivatives and function. United States Patent Application US2016/0138061 A1: 19 May, 2016

  • Hashimoto K (1994) Metastable metals for “green” materials for global atmosphere conservation and abundant energy supply. Mater Sci Eng A 267:200–206

    Article  Google Scholar 

  • Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ (2011) Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • House KZ, Baclig AC, Ranjan M, van Nierop EA, Wilcox J, Herzog HJ (2011) Economic and energetic analysis of capturing CO2 from ambient air. Proc Natl Acad Sci U S A 108:20428–20433

    Article  PubMed  PubMed Central  Google Scholar 

  • International Energy Agency (2017) Biofuels for transport: Tracking Clean Energy Progress.

  • IRENA (2018) Renewable power generation costs in 2017. International Renewable Energy Agency. Abu Dhabi

  • Jannson C, Carr CAM, Reed JS (2016) Microorganism for biosynthesis of limonene on gaseous substrates. United States Patent 9,506,086: 29 Nov, 2016

  • Jungert JR, Borisova M, Mayer C, Wolz C, Brigham CJ, Sinskey AJ, Jendrossek D (2017) Absence of ppGpp leads to increased mobilization of intermediately accumulated poly(3-hydroxybutyrate) (PHB) in Ralstonia eutropha H16. Appl Environ Microbiol 83(13):e00755–e00717

    Google Scholar 

  • Kalkus J, Reh M, Schlegel HG (1990) Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J Gen Microbiol 136:1145–1151

    Article  CAS  PubMed  Google Scholar 

  • Khan NE, Myers JA, Tuerk AL, Curtis WR (2014) A process economic assessment of hydrocarbon biofuels production using chemoautotrophic organisms. Bioresour Technol 172:201–211

    Article  CAS  PubMed  Google Scholar 

  • Khan NE, Nybo SE, Chappell J, Curtis WR (2015) Triterpene hydrocarbon production engineered into a metabolically versatile host—Rhodobacter capsulatus. Biotechnol Bioeng 112:1523–1532

    Article  CAS  PubMed  Google Scholar 

  • Kiely PD, Call DF, Yates MD, Regan JM, Logan BE (2010) Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera. Appl Microbiol Biotechnol 88:371–380

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Chiba Y, Kobayashi A, Arai H, Ishii M (2017) Phosphoserine phosphatase is required for serine and one-carbon unit synthesis in Hydrogenobacter thermophilus. J Bacteriol 199:e00409–e00417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kokkonen P, Bednar D, Dockalova V, Prokop Z, Damborsky J (2018) Conformational changes allow processing of bulky substrates by a haloalkane dehalogenase with a small and buried active site. J Biol Chem 293:11505–11512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopke M, Mihalcea C, Bromley JC, Simpson SD (2011) Fermentative production of ethanol from carbon monoxide. Curr Opin Biotechnol 22:320–325

    Article  CAS  PubMed  Google Scholar 

  • Krieg T, Sydow A, Faust S, Huth I, Holtmann D (2018) CO2 to terpenes: autotrophic and electroautotrophic alpha-humulene production with Cupriavidus necator. Angew Chem Int Ed Engl 57:1879–1882

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Spiro S (2017) Environmental and genetic determinants of biofilm formation in Paracoccus denitrificans. mSphere 2: https://doi.org/10.1128/mSphereDirect.00350-17. eCollection 2017 Sep-Oct

  • Kurosawa K, Boccazzi P, de Almeida NM, Sinskey AJ (2010) High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J Biotechnol 147:212–218

    Article  CAS  PubMed  Google Scholar 

  • Kurosawa K, Laser J, Sinskey AJ (2015) Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnol Biofuels 8: 76–015–0258-3. eCollection 2015

  • Kurosawa K, Wewetzer SJ, Sinskey AJ (2013) Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnol Biofuels 6: 134–6834–6-134

  • Lenz O, Ludwig M, Schubert T, Burstel I, Ganskow S, Goris T, Schwarze A, Friedrich B (2010) H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. ChemPhysChem 11:1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Whitham JM, Holwerda EK, Shao X, Tian L, Wu YW, Lombard V, Henrissat B, Klingeman DM, Yang ZK, Podar M, Richard TL, Elkins JG, Brown SD, Lynd LR (2018) Development and characterization of stable anaerobic thermophilic methanogenic microbiomes fermenting switchgrass at decreasing residence times. Biotechnol Biofuels 11: 243–018–1238-1. eCollection 2018

  • Long M, Ilhan ZE, Xia S, Zhou C, Rittmann BE (2018) Complete dechlorination and mineralization of pentachlorophenol (PCP) in a hydrogen-based membrane biofilm reactor (MBfR). Water Res 144:134–144

    Article  CAS  PubMed  Google Scholar 

  • Luque R (2010) Algal biofuels: the eternal promise? Energy Environ Sci 3:254–257

    Article  CAS  Google Scholar 

  • Muller J, Maceachran D, Burd H, Sathitsuksanoh N, Bi C, Yeh YC, Lee TS, Hillson NJ, Chhabra SR, Singer SW, Beller HR (2013) Engineering of Ralstonia eutropha H16 for autotrophic and heterotrophic production of methyl ketones. Appl Environ Microbiol 79:4433–4439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoli GC, Tabita FR (1998) Aerobic chemolithoautotrophic growth and RubisCO function in Rhodobacter capsulatus and a spontaneous gain of function mutant of Rhodobacter sphaeroides. Arch Microbiol 170:8–17

    Article  CAS  PubMed  Google Scholar 

  • Peplinski K, Ehrenreich A, Doring C, Bomeke M, Reinecke F, Hutmacher C, Steinbüchel A (2010) Genome-wide transcriptome analyses of the ‘Knallgas’ bacterium Ralstonia eutropha H16 with regard to polyhydroxyalkanoate metabolism. Microbiology 156:2136–2152

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer D, Wahl A, Jendrossek D (2011) Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol 82:936–951

    Article  CAS  PubMed  Google Scholar 

  • Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE (2012) Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microbiol 78:5212–5219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raberg M, Volodina E, Lin K, Steinbüchel A (2018) Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 38:494–510

    Article  CAS  PubMed  Google Scholar 

  • Reed J, Geller J, McDaniel R (2015) CO2 conversion by Knallgas microorganisms. In: CEC-500-2017-005

    Google Scholar 

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109:74–83

    Article  CAS  PubMed  Google Scholar 

  • Schatz A, Bovell C Jr (1952) Growth and hydrogenase activity of a new bacterium, Hydrogenomonas facilis. J Bacteriol 63:87–98

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiebahn S, Grube T, Robinius M, Tietze V, Kumar B, Stolten D (2015) Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany. Int J Hydrog Energy 40:4285–4294

    Article  CAS  Google Scholar 

  • Schlegel H, Lafferty R (1971) Novel energy and carbon sources. Adv Biochem Eng 1:143–168

    Article  CAS  Google Scholar 

  • Sensfuss C, Reh M, Schlegel HG (1986) No correlation exists between the conjugative transfer of the autotrophic character and that of plasmids in Nocardia opaca strains. J Gen Microbiol 132:997–1007

    CAS  PubMed  Google Scholar 

  • Silva FT, Moreira LR, de Souza Ferreira J, Batista FR, Cardoso VL (2016) Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate. Bioresour Technol 200:72–80

    Article  CAS  PubMed  Google Scholar 

  • Sterner M (2009) Bioenergy and renewable power methane in integrated 100% renewable energy systems. Kassel University Press, Kassel

  • Sznajder A, Pfeiffer D, Jendrossek D (2015) Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16. Appl Environ Microbiol 81:1847–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabata T, Yoshiba Y, Takashina T, Hieda K, Shimizu N (2017) Bioethanol production from steam-exploded rice husk by recombinant Escherichia coli KO11. World J Microbiol Biotechnol 33: 47–017-2221-x. Epub 2017 Feb 7

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    Article  CAS  PubMed  Google Scholar 

  • Tibbs HBC (1992) Industrial Ecology: an environmental agenda for industry. Whole Earth Rev:4–19

  • Torella JP, Gagliardi CJ, Chen JS, Bediako DK, Colon B, Way JC, Silver PA, Nocera DG (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci U S A 112:2337–2342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y (2005) The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. Microbiology 151:3615–3625

    Article  CAS  PubMed  Google Scholar 

  • US EIA (2018) Levelized cost and levelized avoided cost of new generation resources in the annual energy outlook 2018. United States Energy Information Association. Washington

  • Uyar B, Gurgan M, Ozgur E, Gunduz U, Yucel M, Eroglu I (2015) Hydrogen production by hup(−) mutant and wild-type strains of Rhodobacter capsulatus from dark fermentation effluent of sugar beet thick juice in batch and continuous photobioreactors. Bioprocess Biosyst Eng 38:1935–1942

    Article  CAS  PubMed  Google Scholar 

  • Vo Hoang Nhat P, Ngo HH, Guo WS, Chang SW, Nguyen DD, Nguyen PD, Bui XT, Zhang XB, Guo JB (2018) Can algae-based technologies be an affordable green process for biofuel production and wastewater remediation? Bioresour Technol 256:491–501

    Article  CAS  PubMed  Google Scholar 

  • Volova TG, Kalacheva GS, Altukhova OV (2002) Autotrophic synthesis of polyhydroxyalkanoates by the bacteria Ralstonia eutropha in the presence of carbon monoxide. Appl Microbiol Biotechnol 58:675–678

    Article  CAS  PubMed  Google Scholar 

  • Weisz H, Suh S, Graedel TE (2015) Industrial Ecology: the role of manufactured capital in sustainability. Proc Natl Acad Sci U S A 112:6260–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilde E (1962) Untersuchungen uber Wachstum und Speikerstoffsynthese von Hydrogenomonas. Arch Mikrobiol 43:109–137

    Article  CAS  Google Scholar 

  • Wong YM, Brigham CJ, Rha C, Sinskey AJ, Sudesh K (2012) Biosynthesis and characterization of polyhydroxyalkanoate containing high 3-hydroxyhexanoate monomer fraction from crude palm kernel oil by recombinant Cupriavidus necator. Bioresour Technol 121:320–327

    Article  CAS  PubMed  Google Scholar 

  • Xiong B, Li Z, Liu L, Zhao D, Zhang X, Bi C (2018) Genome editing of Ralstonia eutropha using an electroporation-based CRISPR-Cas9 technique. Biotechnol Biofuels 11: 172–018–1170-4. eCollection 2018

  • Yan J, Liu Y, Wang K, Li D, Hu Q, Zhang W (2018) Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass. Plant Sci 276:143–151

    Article  CAS  PubMed  Google Scholar 

  • Yeh YC, Singer SW, Chhabra SR, Beller HR, Mueller J (2017) Hybrid organic-inorganic system for producing biofuels. United States Patent 9,777,300: 3 October, 2017

  • Yu J, Si Y (2004) Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids. Biotechnol Prog 20:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang J (2001) Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels. Biotechnol Bioeng 73:458–464

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Li G, Zheng N, Wang J, Yu Z (2018) Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour Technol 253:244–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

CJB thanks Prof. Alexander Steinbüchel and the editorial team of Applied Microbiology and Biotechnology for the opportunity to write and publish this work. CJB also thanks Mr. John Quimby and Ms. Jayashree Chakravarty for critical review of the manuscript. Continued thanks to Prof. Anthony Sinskey of Massachusetts Institute of Technology for the opportunity to work on a biofuel production project, which serves as the inspiration for continued interest in this topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Brigham.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brigham, C. Perspectives for the biotechnological production of biofuels from CO2 and H2 using Ralstonia eutropha and other ‘Knallgas’ bacteria. Appl Microbiol Biotechnol 103, 2113–2120 (2019). https://doi.org/10.1007/s00253-019-09636-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-019-09636-y

Keywords

Navigation