Skip to main content
Log in

A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A novel whole-cell biosensor was developed to noninvasively and simultaneously monitor the in situ genetic activities of the four quorum sensing (QS) networks in Pseudomonas aeruginosa PAO1, including the las, rhl, pqs, and iqs systems. P. aeruginosa PAO1 is a model bacterium for studies of biofilm and pathogenesis while both processes are closely controlled by the QS systems. This biosensor worked well by selectively monitoring the expression of one representative gene from each network. In the biosensor, the promoter regions of lasI, rhlI, pqsA, and ambB (QS genes) controlled the fluorescent reporter genes of Turbo YFP, mTag BFP2, mNEON Green, and E2-Orange, respectively. The biosensor was successful in monitoring the impact of an important environmental factor, salt stress, on the genetic regulation of QS networks. High salt concentrations (≥ 20 g·L−1) significantly downregulated rhlI, pqsA, and ambB after the biosensor was incubated for 17 h to 18 h at 37 °C, resulting in slow bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aires JR, Köhler T, Nikaido H, Plésiat P (1999) Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob Agents Chemother 43(11):2624–2628

    PubMed  PubMed Central  CAS  Google Scholar 

  • Andersen JT, Poulsen P, Jensen KF (1992) Attenuation in the rph-pyrE operon of Escherichia coli and processing of the dicistronic mRNA. Eur J Biochem 206(2):381–390

    Article  PubMed  CAS  Google Scholar 

  • Antoine R, Locht C (1992) Isolation and molecular characterization of a novel broad-host-range plasmid from Bordetella bronchiseptica with sequence similarities to plasmids from Gram-positive organisms. Mol Microbiol 6(13):1785–1799

    Article  PubMed  CAS  Google Scholar 

  • Aspedon A, Palmer K, Whiteley M (2006) Microarray analysis of the osmotic stress response in Pseudomonas aeruginosa. J Bacteriol 188(7):2721–2725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Avison MB (2007) Measuring Gene Expression. Taylor & Francis Group, New York, New York, USA

  • Bazire A, Dheilly A, Diab F, Morin D, Jebbar M, Haras D, Dufour A (2005) Osmotic stress and phosphate limitation alter production of cell-to-cell signal molecules and rhamnolipid biosurfactant by Pseudomonas aeruginosa. FEMS Microbiol Lett 253(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Bazire A, Diab F, Jebbar M, Haras D (2007) Influence of high salinity on biofilm formation and benzoate assimilation by Pseudomonas aeruginosa. J Ind Microbiol Biotechnol 34(1):5–8

    Article  PubMed  CAS  Google Scholar 

  • Bazire A, Diab F, Taupin L, Rodrigues S, Jebbar M, Dufour A (2009) Effects of osmotic stress on rhamnolipid synthesis and time-course production of cell-to-cell signal molecules by Pseudomonas aeruginosa. Open Microbiol J 3:128–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bervoets L, Wils C, Verheyen R (1996) Tolerance of Chironomus riparius larvae (Diptera: Chironomidae) to salinity. Bull Environ Contam Toxicol 57(5):829–835

    Article  PubMed  CAS  Google Scholar 

  • Bonnichsen L, Svenningsen NB, Rybtke M, de Bruijn I, Raaijmakers JM, Tolker-Nielsen T, Nybroe O (2015) Lipopeptide biosurfactant viscosin enhances dispersal of Pseudomonas fluorescens SBW25 biofilms. Microbiology 161(12):2289–2297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borrero-de Acuña JM, Bielecka A, Häussler S, Schobert M, Jahn M, Wittmann C, Jahn D, Poblete-Castro I (2014) Production of medium chain length polyhydroxyalkanoate in metabolic flux optimized Pseudomonas putida. Microb Cell Fact 13: Article No. 88

  • Brown JR, Volker C (2004) Phylogeny of γ-proteobacteria: resolution of one branch of the universal tree? BioEssays 26(5):463–468

    Article  PubMed  CAS  Google Scholar 

  • Brutesco C, Prévéral S, Escoffier C, Descamps EC, Prudent E, Cayron J, Dumas L, Ricquebourg M, Adryanczyk-Perrier G, de Groot A (2017) Bacterial host and reporter gene optimization for genetically encoded whole cell biosensors. Environ Sci Pollut Res 24(1):52–65

    Article  CAS  Google Scholar 

  • Cacalano G, Kays M, Saiman L, Prince A (1992) Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression. J Clin Invest 89(6):1866–1874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic biological parts and devices. Nat Biotechnol 26(7):787–793

    Article  PubMed  CAS  Google Scholar 

  • Casciotti KL, Ward BB (2005) Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiol Ecol 52(2):197–205

    Article  PubMed  CAS  Google Scholar 

  • Chan CT, Lee JW, Cameron DE, Bashor CJ, Collins JJ (2016) ‘Deadman’ and ‘Passcode’ microbial kill switches for bacterial containment. Nat Chem Biol 12(2):82–86

    Article  PubMed  CAS  Google Scholar 

  • Chen Y-J, Liu P, Nielsen AA, Brophy JA, Clancy K, Peterson T, Voigt CA (2013) Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods 10(7):659–664

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Patterson TA (1992) Construction and use of λ P L promoter vectors for direct cloning and high level expression of PCR amplified DNA coding sequences. Nucleic Acids Res 20(17):4591–4598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi K-H, Schweizer HP (2006) Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1(1):153–161

    Article  PubMed  CAS  Google Scholar 

  • Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90(3):1103–1163

    Article  PubMed  CAS  Google Scholar 

  • Chung C, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86(7):2172–2175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cold Spring Harbor Laboratory Press (2006) LB (Luria-Bertani) liquid medium. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.rec8141

  • Coleman JP, Hudson LL, McKnight SL, Farrow JM, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190(4):1247–1255

    Article  PubMed  CAS  Google Scholar 

  • Costechareyre D, Bertolla F, Nesme X (2009) Homologous recombination in Agrobacterium: potential implications for the genomic species concept in bacteria. Mol Biol Evol 26(1):167–176

    Article  PubMed  CAS  Google Scholar 

  • Cotruvo J (2015) Professor POU/POE-January 2015: this month’s topic: salinity in drinking water. Water Technol: http://www.watertechonline.com/professor-poupoe-january-2015/

  • Cox III RS, Dunlop MJ, Elowitz MB (2010) A synthetic three-color scaffold for monitoring genetic regulation and noise. J Biol Eng 4: Article No. 10

  • Craig N, Green R, Greider C, Cohen-Fix O, Storz G, Wolberger C (2014) Molecular Biology: Principles of Genome Function, 2nd edn. Oxford University Press, New York, New York, USA

  • Damron FH, McKenney ES, Barbier M, Liechti GW, Schweizer HP, Goldberg JB (2013) Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl Environ Microbiol 79(13):4149–4153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daunert S, Barrett G, Feliciano JS, Shetty RS, Shrestha S, Smith-Spencer W (2000) Genetically engineered whole-cell sensing systems: coupling biological recognition with reporter genes. Chem Rev 100(7):2705–2738

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JT, Greenberg E (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298

    Article  PubMed  CAS  Google Scholar 

  • Davis LG, Dibner MD, Battey JF (1986) Basic Methods in Molecular Biology. Elsevier B.V., New York, New York, USA

  • Dedecker P, De Schryver FC, Hofkens J (2013) Fluorescent proteins: shine on, you crazy diamond. J Am Chem Soc 135(7):2387–2402

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Boon C, Chen S, Lim A, Zhang L-H (2013) Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS. BMC Microbiol 13: Article No. 231

  • Déziel E, Gopalan S, Tampakaki AP, Lépine F, Padfield KE, Saucier M, Xiao G, Rahme LG (2005) The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-L-homoserine lactones. Mol Microbiol 55(4):998–1014

  • Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, Kong X, Hider RC, Cornelis P, Cámara M (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14(1):87–96

    Article  PubMed  CAS  Google Scholar 

  • D'Souza-Ault M, Smith L, Smith G (1993) Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 59(2):473–478

    PubMed  PubMed Central  CAS  Google Scholar 

  • Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and Rhl quorum-sensing systems. J Bacteriol 189(13):4827–4836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elad T, Belkin S (2013) Broad spectrum detection and “barcoding” of water pollutants by a genome-wide bacterial sensor array. Water Res 47(11):3782–3790

    Article  PubMed  CAS  Google Scholar 

  • Elzer PH, Kovach ME, Phillips RW, Robertson GT, Peterson KM, Roop RM (1995) In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species. Plasmid 33(1):51–57

    Article  PubMed  CAS  Google Scholar 

  • Engibarov S, Еneva R, Abrashev I (2015) Neuraminidase (sialidase) from Aeromonas sp. strain 40/02—isolation and partial purification. Ann Microbiol 65(3):1515–1523

    Article  CAS  Google Scholar 

  • Erken M, Lutz C, McDougald D (2013) The rise of pathogens: predation as a factor driving the evolution of human pathogens in the environment. Microb Ecol 65(4):860–868

    Article  PubMed  PubMed Central  Google Scholar 

  • Ermolaeva MD, Khalak HG, White O, Smith HO, Salzberg SL (2000) Prediction of transcription terminators in bacterial genomes. J Mol Biol 301(1):27–33

    Article  PubMed  CAS  Google Scholar 

  • Farnham PJ, Platt T (1981) Rho-independent termination: dyad symmetry in DNA causes RNA polymerase to pause during transcription in vitro. Nucleic Acids Res 9(3):563–577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farzadfard F, Lu TK (2014) Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science 346(6211):Article No.1256272

  • Feng C, Khulbe K, Matsuura T, Gopal R, Kaur S, Ramakrishna S, Khayet M (2008) Production of drinking water from saline water by air-gap membrane distillation using polyvinylidene fluoride nanofiber membrane. J Membr Sci 311:1–2):1-6

    Article  CAS  Google Scholar 

  • Frederix M, Downie AJ (2011) Quorum sensing: regulating the regulators. In: Poole RK (ed) Advances in Microbial Physiology, vol Volume 58. 1st edition edn. Academic Press (Elsevier Ltd.), Waltham, Massachusetts, USA, pp 23–80

  • Gallagher LA, McKnight SL, Kuznetsova MS, Pesci EC, Manoil C (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184(23):6472–6480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghazaei C, Ahmadi M, Jazani NH (2010) Detection of neuraminidase activity in Pseudomonas aeruginosa PAO1. Iran J Basic Med Sci 13(3):69–75

    CAS  Google Scholar 

  • Green MR, Sambrook J (2012) Molecular Cloning: A Laboratory Manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA

  • Gupta RS (2000) The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol Rev 24(4):367–402

    Article  PubMed  CAS  Google Scholar 

  • Haber JE (2014) Genome Stability: DNA Repair and Recombination. Garland Science (Taylor & Francis Group), New York, USA

  • Hächler H, Santanam P, Kayser FH (1996) Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3′)-IIb, in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40(5):1254–1256

    PubMed  PubMed Central  Google Scholar 

  • Hakkila K, Maksimow M, Karp M, Virta M (2002) Reporter genes lucFF, luxCDABE, gfp, and dsred have different characteristics in whole-cell bacterial sensors. Anal Biochem 301(2):235–242

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  PubMed  CAS  Google Scholar 

  • Havasi V, Hurst CO, Briles TC, Yang F, Bains DG, Hassett DJ, Sorscher E (2008) Inhibitory effects of hypertonic saline on P. aeruginosa motility. J Cyst Fibros 7(4):267–269

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M (2011) Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev 35(2):247–274

    Article  PubMed  CAS  Google Scholar 

  • Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N (2002) Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148(1):87–102

    Article  PubMed  CAS  Google Scholar 

  • Hentzer M, Wu H, Andersen JB, Riedel K, Rasmussen TB, Bagge N, Kumar N, Schembri MA, Song Z, Kristoffersen P (2003) Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22(15):3803–3815

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herbert D, Elsworth R, Telling R (1956) The continuous culture of bacteria; a theoretical and experimental study. J Gen Microbiol 14(3):601–622

    Article  PubMed  CAS  Google Scholar 

  • Ho K-C, Xu SJ-L, Wu K-C, Lee FW-F (2013) Effective growth of dinoflagellate Prorocentrum minimum by cultivating the cells using municipal wastewater as nutrient source. Water Sci Technol 68(5):1100–1106

    Article  PubMed  CAS  Google Scholar 

  • Hoseini SS, Sauer MG (2015) Molecular cloning using polymerase chain reaction, an educational guide for cellular engineering. J Biol Eng 9: Article No. 2

  • Idil N, Hedström M, Denizli A, Mattiasson B (2017) Whole cell based microcontact imprinted capacitive biosensor for the detection of Escherichia coli. Biosens Bioelectron 87:807–815

    Article  PubMed  CAS  Google Scholar 

  • Ind AC, Porter SL, Brown MT, Byles ED, de Beyer JA, Godfrey SA, Armitage JP (2009) Inducible-expression plasmid for Rhodobacter sphaeroides and Paracoccus denitrificans. Appl Environ Microbiol 75(20):6613–6615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Innis MA, Gelfand DH, Sninsky JJ, White TS (1990) PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., San Diego, California, USA

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Jack BR, Leonard SP, Mishler DM, Renda BA, Leon D, Suárez GA, Barrick JE (2015) Predicting the genetic stability of engineered DNA sequences with the EFM calculator. ACS Synth Biol 4(8):939–943

    Article  PubMed  CAS  Google Scholar 

  • Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3: Article No. 18

  • Ji SM, Jun H, Jang JS, Son HC, Borse PH, Lee JS (2007) Photocatalytic hydrogen production from natural seawater. J Photochem Photobiol A Chem 189(1):141–144

    Article  CAS  Google Scholar 

  • Jittawuttipoka T, Buranajitpakorn S, Fuangthong M, Schweizer HP, Vattanaviboon P, Mongkolsuk S (2009) Mini-Tn7 vectors as genetic tools for gene cloning at a single copy number in an industrially important and phytopathogenic bacteria, Xanthomonas spp. FEMS Microbiol Lett 298(1):111–117

  • Kahl G (2015) The Dictionary of Genomics, Transcriptomics and Proteomics, 5th ed edn. Wiley-VCH, Weinheim Baden-Württemberg, Germany

  • Khan SR, Gaines J, Roop RM, Farrand SK (2008) Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74(16):5053–5062

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Kievit TR, Gillis R, Marx S, Brown C, Iglewski BH (2001) Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl Environ Microbiol 67(4):1865–1873

    Article  PubMed  PubMed Central  Google Scholar 

  • de Kievit TR, Kakai Y, Register JK, Pesci EC, Iglewski BH (2002) Role of the Pseudomonas aeruginosa las and rhl quorum-sensing systems in rhlI regulation. FEMS Microbiol Lett 212(1):101–106

    Article  PubMed  Google Scholar 

  • Kim K, Kim YU, Koh BH, Hwang SS, Kim SH, Lépine F, Cho YH, Lee GR (2010) HHQ and PQS, two Pseudomonas aeruginosa quorum-sensing molecules, down-regulate the innate immune responses through the nuclear factor-κB pathway. Immunology 129(4):578–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H-S, Lee S-H, Byun Y, Park H-D (2015) 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Sci Rep 5: Article No. 8656

  • Kiratisin P, Tucker KD, Passador L (2002) LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J Bacteriol 184(17):4912–4919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–1291

    Article  PubMed  CAS  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166(1):175–176

    Article  PubMed  CAS  Google Scholar 

  • Krom RJ, Bhargava P, Lobritz MA, Collins JJ (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett 15(7):4808–4813

    Article  PubMed  CAS  Google Scholar 

  • Kwon DH, Lu C-D (2006) Polyamines induce resistance to cationic peptide, aminoglycoside, and quinolone antibiotics in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 50(5):1615–1622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Latifi A, Foglino M, Tanaka K, Williams P, Lazdunski A (1996) A hierarchical quorum-sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Mol Microbiol 21(6):1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Le Berre R, Nguyen S, Nowak E, Kipnis E, Pierre M, Ader F, Courcol R, Guery B, Faure K (2008) Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 14(4):337–343

    Article  PubMed  Google Scholar 

  • Lee J, Zhang L (2015) The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6(1):26–41

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Wu J, Deng Y, Wang J, Wang C, Wang J, Chang C, Dong Y, Williams P, Zhang L-H (2013) A cell-cell communication signal integrates quorum sensing and stress response. Nat Chem Biol 9(5):339–343

    Article  PubMed  CAS  Google Scholar 

  • Lennox E (1955) Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1(2):190–206

    Article  PubMed  CAS  Google Scholar 

  • Lesic á, Starkey á, He J, Hazan R, Rahme L (2009) Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology 155(9):2845–2855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L-L, Malone JE, Iglewski BH (2007) Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189(12):4367–4374

  • Liu H-S, Jan M-S, Chou C-K, Chen P-H, Ke N-J (1999) Is green fluorescent protein toxic to the living cells? Biochem Biophys Res Commun 260(3):712–717

    Article  PubMed  CAS  Google Scholar 

  • Maggi S, Massidda O, Luzi G, Fadda D, Paolozzi L, Ghelardini P (2008) Division protein interaction web: identification of a phylogenetically conserved common interactome between Streptococcus pneumoniae and Escherichia coli. Microbiology 154(10):3042–3052

    Article  PubMed  CAS  Google Scholar 

  • Mairhofer J, Wittwer A, Cserjan-Puschmann M, Striedner G (2014) Preventing T7 RNA polymerase read-through transcription-a synthetic termination signal capable of improving bioprocess stability. ACS Synth Biol 4(3):265–273

    Article  PubMed  CAS  Google Scholar 

  • Majewski J, Cohan FM (1999) DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153(4):1525–1533

    PubMed  PubMed Central  CAS  Google Scholar 

  • Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J Bacteriol 182(4):1016–1023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-García E, Aparicio T, Goñi-Moreno A, Fraile S, de Lorenzo V (2015) SEVA 2.0: an update of the Standard European Vector Architecture for de-/re-construction of bacterial functionalities. Nucleic Acids Res 43(Database issue):D1183–D1189

  • McGrath S, Wade DS, Pesci EC (2004) Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiol Lett 230(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • McKnight SL, Iglewski BH, Pesci EC (2000) The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182(10):2702–2708

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLusky DS, Elliott M (2004) The Estuarine Ecosystem: Ecology, Threats and Management, 3rd edition edn. Oxford University Press, New York, New York, USA

  • McPherson BF, Hammett K (1991) Tidal rivers of Florida. In: Livingston RJ (ed) The Rivers of Florida. Ecological Studies: Analysis and Synthesis, Vol 83. Springer-Verlag New York, Inc., New York, New York, USA, pp 31–46

  • Miller JH (1972) Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA

  • Miller WG, Lindow SE (1997) An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene 191(2):149–153

    Article  PubMed  CAS  Google Scholar 

  • Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol Plant-Microbe Interact 13(11):1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Mooij MJ, Holcombe LJ, McSweeney CM, McGlacken GP, Morrissey JP, O'Gara F (2011) The Pseudomonas quinolone signal (PQS), and its precursor HHQ, modulate interspecies and interkingdom behaviour. FEMS Microbiol Ecol 77(2):413–428

    Article  PubMed  CAS  Google Scholar 

  • Morales E, González-Valdez A, Servín-González L, Soberón-Chávez G (2017) Pseudomonas aeruginosa quorum-sensing response in the absence of functional LasR and LasI proteins: the case of strain 148, a virulent dolphin isolate. FEMS Microbiol Lett 364(12): Article No. fnx119]

  • Morita Y, Tomida J, Kawamura Y (2014) Responses of Pseudomonas aeruginosa to antimicrobials. Front Microbiol 4: Article No. 422

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1): Article No. e14

  • Norris MH, Kang Y, Wilcox B, Hoang TT (2010) Stable, site-specific fluorescent tagging constructs optimized for Burkholderia species. Appl Environ Microbiol 76(22):7635–7640

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nostro PL, Ninham BW, Nostro AL, Pesavento G, Fratoni L, Baglioni P (2005) Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa. Phys Biol 2(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110(44):17981–17986

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Neill SL, Giordano R, Colbert A, Karr TL, Robertson HM (1992) 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proc Natl Acad Sci U S A 89(7):2699–2702

    Article  PubMed  PubMed Central  Google Scholar 

  • Parrello D, Mustin C, Brie D, Miron S, Billard P (2015) Multicolor whole-cell bacterial sensing using a synchronous fluorescence spectroscopy-based approach. PloS One 10(3): Article No. e0122848

  • Parsek MR, Greenberg E (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends in Microbiol 13(1):27–33

    Article  CAS  Google Scholar 

  • Pearson JP, Gray KM, Passador L, Tucker KD, Eberhard A, Iglewski BH, Greenberg E (1994) Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91(1):197–201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson JP, Passador L, Iglewski BH, Greenberg E (1995) A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92(5):1490–1494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC, Iglewski BH (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179(10):3127–3132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters JM, Vangeloff AD, Landick R (2011) Bacterial transcription terminators: the RNA 3′-end chronicles. J Mol Biol 412(5):793–813

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramsköld D, Kavak E, Sandberg R (2012) How to analyze gene expression using RNA-sequencing data. In: Wang J, Tan A, Tian T (eds) Next generation microarray bioinformatics: methods and protocols. Methods in Molecular Biology, vol. 802 Springer (Humana Press), New York, pp 259–274

  • Rasamiravaka T, Vandeputte OM, Pottier L, Huet J, Rabemanantsoa C, Kiendrebeogo M, Andriantsimahavandy A, Rasamindrakotroka A, Stévigny C, Duez P (2015) Pseudomonas aeruginosa biofilm formation and persistence, along with the production of quorum sensing-dependent virulence factors, are disrupted by a triterpenoid coumarate ester isolated from Dalbergia trichocarpa, a tropical legume. PloS One 10(7): Article No. e0132791

  • Ravikumar S, Ganesh I, Yoo I-K, Hong SH (2012) Construction of a bacterial biosensor for zinc and copper and its application to the development of multifunctional heavy metal adsorption bacteria. Process Biochem 47(5):758–765

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics Methods and Protocols. Methods in Molecular Biology, vol 132. Springer (Humana Press), Totowa, New Jersey, pp 365–386

  • Rumbaugh KP, Griswold JA, Iglewski BH, Hamood AN (1999) Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67(11):5854–5862

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sakuragi Y, Kolter R (2007) Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. J Bacteriol 189(14):5383–5386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schuster M, Greenberg EP (2006) A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. Int J Med Microbiol 296(2–3):73–81

    Article  PubMed  CAS  Google Scholar 

  • Schuster M, Greenberg EP (2007) Early activation of quorum sensing in Pseudomonas aeruginosa reveals the architecture of a complex regulon. BMC Genomics 8: Article No. 287

  • Seed PC, Passador L, Iglewski BH (1995) Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy. J Bacteriol 177(3):654–659

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    Article  PubMed  CAS  Google Scholar 

  • Shaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M (2013) A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nat Methods 10(5):407–409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shemiakina I, Ermakova G, Cranfill P, Baird M, Evans R, Souslova E, Staroverov D, Gorokhovatsky A, Putintseva E, Gorodnicheva T (2012) A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3: Article No. 1204

  • Shen P, Huang HV (1986) Homologous recombination in Escherichia coli: dependence on substrate length and homology. Genetics 112(3):441–457

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shih P-C, Huang C-T (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49(2):309–314

    Article  PubMed  CAS  Google Scholar 

  • Shrout JD, Tolker-Nielsen T, Givskov M, Parsek MR (2011) The contribution of cell-cell signaling and motility to bacterial biofilm formation. MRS Bull 36(5):367–373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silva-Rocha R, Martínez-García E, Calles B, Chavarría M, Arce-Rodríguez A, de las Heras A, Páez-Espino AD, Durante-Rodríguez G, Kim J, Nikel PI (2013) The Standard European Vector Architecture (SEVA): a coherent platform for the analysis and deployment of complex prokaryotic phenotypes. Nucleic Acids Res 41(Database issue):D666–D675

    Article  PubMed  CAS  Google Scholar 

  • Sims J, Enomoto PI, Frankel RI, Wong LM (1983) Marine bacteria complicating seawater near-drowning and marine wounds: a hypothesis. Ann Emerg Med 12(4):212–216

    Article  PubMed  CAS  Google Scholar 

  • Sleight SC, Bartley BA, Lieviant JA, Sauro HM (2010) Designing and engineering evolutionary robust genetic circuits. J Biol Eng 4: Article No. 12

  • Smith GR (1988) Homologous recombination in procaryotes. Microbiol Rev 52(1):1–28

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6(1):56–60

    Article  PubMed  CAS  Google Scholar 

  • Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104

    Article  PubMed  CAS  Google Scholar 

  • Steindler L, Bertani I, De Sordi L, Schwager S, Eberl L, Venturi V (2009) LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75(15):5131–5140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FSL, Hufnagle WO, Kowalik DJ, Lagrou M (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406(6799):959–964

    Article  PubMed  CAS  Google Scholar 

  • Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A, Broxmeyer HE, Keenan RJ, Glick BS (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5(11):955–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strack RL, Bhattacharyya D, Glick BS, Keenan RJ (2009) Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnol 9: Article No. 32

  • Strahl E, Dobson W, Lundie J, LL (2002) Isolation and screening of brittlestar-associated bacteria for antibacterial activity. Curr Microbiol 44(6):450–459

  • Swift S, Downie JA, Whitehead NA, Barnard AM, Salmond GP, Williams P (2001) Quorum sensing as a population-density-dependent determinant of bacterial physiology. Adv Microb Physiol 45:199–270

    Article  PubMed  CAS  Google Scholar 

  • Szpirer CY, Faelen M, Couturier M (2001) Mobilization function of the pBHR1 plasmid, a derivative of the broad-host-range plasmid pBBR1. J Bacteriol 183(6):2101–2110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang H, DiMango E, Bryan R, Gambello M, Iglewski B, Goldberg J, Prince A (1996) Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection. Infect Immun 64(1):37–43

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tao W, Evans BG, Yao J, Cooper S, Cornetta K, Ballas CB, Hangoc G, Broxmeyer HE (2007) Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells 25(3):670–678

    Article  PubMed  CAS  Google Scholar 

  • Taylor M, Dillon WP, Pecher I (2000) Trapping and migration of methane associated with the gas hydrate stability zone at the Blake Ridge Diapir: new insights from seismic data. Mar Geol 164(1–2):79–89

    Article  CAS  Google Scholar 

  • Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69(4):2313–2320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teng L, Wang K, Xu J, Xu C (2015) Flavin mononucleotide (FMN)-based fluorescent protein (FbFP) as reporter for promoter screening in Clostridium cellulolyticum. J Microbiol Methods 119:37–43

    Article  PubMed  CAS  Google Scholar 

  • Ueno T, Nagano T (2011) Fluorescent probes for sensing and imaging. Nat Methods 8(8):642–645

    Article  PubMed  CAS  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40(15): Article No. e115

  • USEPA (Accessed 2017) Secondary Drinking Water Standards: Guidance for Nuisance Chemicals

  • Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76(1):243–253

    Article  PubMed  CAS  Google Scholar 

  • VanGuilder HD, Vrana KE, Freeman WM (2008) Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 44(5):619–626

    Article  PubMed  CAS  Google Scholar 

  • Vasilescu A, Gáspár S, Gheorghiu M, David S, Dinca V, Peteu S, Wang Q, Li M, Boukherroub R, Szunerits S (2017) Surface plasmon resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces. Biosens Bioelectron 89(Part 1):525–531

    Article  PubMed  CAS  Google Scholar 

  • Wagner VE, Bushnell D, Passador L, Brooks AI, Iglewski BH (2003) Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185(7):2080–2095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wargo MJ, Hogan DA (2007) Examination of Pseudomonas aeruginosa lasI regulation and 3-oxo-C12-homoserine lactone production using a heterologous Escherichia coli system. FEMS Microbiol Lett 273(1):38–44

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346

    Article  PubMed  CAS  Google Scholar 

  • Whangsuk W, Thiengmag S, Dubbs J, Mongkolsuk S, Loprasert S (2016) Specific detection of the pesticide chlorpyrifos by a sensitive genetic-based whole cell biosensor. Anal Biochem 493:11–13

    Article  PubMed  CAS  Google Scholar 

  • Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum-sensing in Gram-negative bacteria. FEMS Microbiol Rev 25(4):365–404

    Article  PubMed  CAS  Google Scholar 

  • Whiteley M, Lee KM, Greenberg E (1999) Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96(24):13904–13909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whiteley M, Parsek MR, Greenberg E (2000) Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa. J Bacteriol 182(15):4356–4360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wickersham IR, Sullivan HA, Seung HS (2013) Axonal and subcellular labelling using modified rabies viral vectors. Nat Commun 4: Article No. 2332

  • Willems A, Collins M (1993) Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int J Syst Bacteriol 43(2):305–313

    Article  PubMed  CAS  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12(2):182–191

    Article  PubMed  CAS  Google Scholar 

  • Williams KP, Gillespie JJ, Sobral BW, Nordberg EK, Snyder EE, Shallom JM, Dickerman AW (2010) Phylogeny of gammaproteobacteria. J Bacteriol 192(9):2305–2314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Winzer K, Williams P (2001) Quorum sensing and the regulation of virulence gene expression in pathogenic bacteria. Int J Med Microbiol 291(2):131–143

    Article  PubMed  CAS  Google Scholar 

  • Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Lory S (2003) Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100(14):8484–8489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wright O, Delmans M, Stan G-B, Ellis T (2014) GeneGuard: a modular plasmid system designed for biosafety. ACS Synth Biol 4(3):307–316

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Song Z, Givskov M, Doring G, Worlitzsch D, Mathee K, Rygaard J, Høiby N (2001) Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147(5):1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Tam N, Wong M (2008) Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms. Marine Poll Bull 57(6–12):727–734

    Article  CAS  Google Scholar 

  • Yang L, Barken KB, Skindersoe ME, Christensen AB, Givskov M, Tolker-Nielsen T (2007) Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology 153(5):1318–1328

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Zhang T (2011) Ammonia-oxidizing bacteria dominates over ammonia-oxidizing archaea in a saline nitrification reactor under low DO and high nitrogen loading. Biotechnol Bioeng 108(11):2544–2552

    Article  PubMed  CAS  Google Scholar 

  • Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette MG, Alon U (2006) A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nat Methods 3(8):623–628

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Hu Z (2013) Combined treatment of Pseudomonas aeruginosa biofilms with bacteriophages and chlorine. Biotechnol Bioeng 110(1):286–295

    Article  PubMed  CAS  Google Scholar 

  • Zobel S, Benedetti I, Eisenbach L, de Lorenzo V, Wierckx N, Blank LM (2015) Tn7-based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol 4(12):1341–1351

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

pSEVA-P lac -M Cherry, pSEVA-P lac -Turbo YFP, pSEVA-P lac -mNEON Green, pSEVA-P lac -E2-Orange, pSEVA-P lac -mTag BFP2 (Tables 1 and S1) and several other plasmids used in this study were constructed and generously donated by Dr. Patrick Billard (Université de Lorraine, CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), UMR 7360, Vandoeuvre-lès-Nancy, France). The authors highly appreciate his contribution and help.

Funding

This study was funded by the MIZZOU Advantage program at the University of Missouri (Columbia, MO, USA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(DOCX 1.03 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Parrello, D., Brown, P.J.B. et al. A novel whole-cell biosensor of Pseudomonas aeruginosa to monitor the expression of quorum sensing genes. Appl Microbiol Biotechnol 102, 6023–6038 (2018). https://doi.org/10.1007/s00253-018-9044-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-018-9044-z

Keywords

Navigation