Skip to main content
Log in

Decay of the water reed Phragmites communis caused by the white-rot fungus Phlebia tremellosa and the influence of some environmental factors

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The strain Phlebia tremellosa SBUG 1630 isolated from a thatched roof in Northern Germany is capable of colonizing and degrading effectively the water reed Phragmites communis. Within 96 h after inoculation, mycelia covered both the outer and the inner surface of reed shoot fragments as observed by scanning electron microscopy. Interestingly, top culm sections and culm edges were particularly susceptible towards fungal degradation. The weight loss of culms reached 20–73% depending on the environmental conditions applied during the incubation of 70 days. Reed degradation was stable at pH 4 to pH 8 and optimal between 25 and 30 °C. Short-term incubation at elevated temperatures (37 to 55 °C) affected the fungal reed degradation to only a minor extent, whereas > 18 h at 55 °C completely inhibited fungal growth and reed degradation. Supplementation with 43 mM NH4Cl enhanced the reed degradation up to 9%. In contrast, the addition of diammonium tartrate increased the weight loss of the samples considerably up to 16% at 344 mM. Furthermore, reed degradation by P. tremellosa was increased by supplementing the test medium with Mn (99 to 1584 μM), Cu (150 to 300 μM), and less significantly phosphate (4 mM), Zn (37 to 74 μM), and Ag (76 μM) after 70 days. In addition, activities of the ligninolytic enzymes laccase (max. 27.4 nmol ml−1 min−1) and lignin peroxidase (max. 22.8 nmol ml−1 min−1) were rather low in nitrogen-limited medium, whereas considerably higher levels of manganese peroxidase (max. 635.9 nmol ml−1 min1) were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anthony PA (1999) The macrofungi and decay of roofs thatched with water reed, Phragmites australis. Mycol Res 103:1346–1352

    Article  Google Scholar 

  • Arora DS, Sharma RK (2009) Comparative ligninolytic potential of Phlebia species and their role in improvement of in vitro digestibility of wheat straw. J Anim Feed Sci 18:151–161

    Article  Google Scholar 

  • Arora DS, Sharma RK (2011) Effect of different supplements on bioprocessing of wheat straw by Phlebia brevispora: changes in its chemical composition, in vitro digestibility and nutritional properties. Bioresour Technol 102:8085–8091

    Article  CAS  PubMed  Google Scholar 

  • Arora DS, Chander M, Gill PK (2002) Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int Biodeter Biodegr 50:115–120

    Article  CAS  Google Scholar 

  • Asada Y, Watanabe A, Irie T, Nakayama T, Kuwahara M (1995) Structures of genomic and complementary DNAs coding for Pleurotus ostreatus manganese (II) peroxidase. Biochim Biophys Acta 1251:205–209

    Article  PubMed  Google Scholar 

  • Babich H, Stotzky G (1978) Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Appl Environ Microb 36:906–914

    CAS  Google Scholar 

  • Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74

    Article  CAS  PubMed  Google Scholar 

  • Blanchette RA (1984) Manganese accumulation in wood decayed by white rot fungi. Phytopathology 74:725–730

    Article  CAS  Google Scholar 

  • Boddy L, Rayner ADM (1983) Origins of decay in living deciduous trees: the role of moisture content and a re-appraisal of the expanded concept of tree decay. New Phytol 94:623–641

    Article  Google Scholar 

  • Bosman MT (1985) Some effects of decay and weathering on the anatomical structure of the stem of Phragmites australis Trin. Ex Steud. IAWA J 6:165–170

    Article  Google Scholar 

  • Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  PubMed  Google Scholar 

  • Brown JA, Li D, Alic M, Gold MH (1993) Heat shock induction of manganese peroxidase gene transcription in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 59:4295–4299

    CAS  Google Scholar 

  • Cabrero A, Fernandez S, Mirada F, Garcia J (1998) Effects of copper and zinc on the activated sludge bacteria growth kinetics. Water Res 32:1355–1362

    Article  CAS  Google Scholar 

  • Carlsson F, Edman M, Holm S, Eriksson AM, Jonsson BG (2012) Increased heat resistance in mycelia from wood fungi prevalent in forests characterized by fire: a possible adaptation to forest fire. Fungal Biol-UK 116:1025–1031

    Article  Google Scholar 

  • Cavalaglio G, Gelosia M, Ingles D, Pompili E, D’Antonio S, Cotana F (2016) Response surface methodology for the optimization of cellulosic ethanol production from Phragmites australis through pre-saccharification and simultaneous saccharification and fermentation. Ind Crop Prod 83:431–437

    Article  CAS  Google Scholar 

  • Cobas M, Danko AS, Pazos M, Sanromán MA (2016) Removal of metal and organic pollutants from wastewater by a sequential selective technique. Bioresour Technol 213:2–10

    Article  CAS  PubMed  Google Scholar 

  • Dosdall R, Hahn V, Preuss F, Kreisel H, Miersch J, Schauer F (2014) Characterization of fungi of the genus Mycena isolated from houses thatched with Phragmites communis Trin. in Northern Germany: enzyme pattern and reed decay. Int Biodeter Biodegr 96:174–180

    Article  Google Scholar 

  • Dosdall R, Jülich WD, Schauer F (2015) Impact of heat treatment of the water reed Phragmites communis Trin. used for thatching on its stability, elasticity and resistance to fungal decomposition. Int Biodeter Biodegr 103:85–90

    Article  Google Scholar 

  • Fonseca MI, Fariña JI, Castrillo ML, Rodríguez MD, Nuñez CE, Villalba LL, Zapata PD (2014a) Biopulping of wood chips with Phlebia brevispora BAFC 633 reduces lignin content and improves pulp quality. Int Biodeter Biodegr 90:29–35

    Article  CAS  Google Scholar 

  • Fonseca MI, Ramos-Hryb AB, Fariña JI, Afanasiuk SSS, Villalba LL, Zapata PD (2014b) Effect of chemical and metallic compounds on biomass, mRNA levels and laccase activity of Phlebia brevispora BAFC 633. World J Microb Biot 30:2251–2262

    Article  CAS  Google Scholar 

  • Galhaup C, Haltrich D (2001) Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl Microbiol Biotechnol 56:225–232

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Kreisel H, Kordon K, Preuss F, Kües U, Schauer F (2016) The key role of lignin decomposing fungi in the decay of roofs thatched with water reed. Mycol Prog 15:1–7

    Article  Google Scholar 

  • Kamei I, Hirota Y, Meguro S (2012) Integrated delignification and simultaneous saccharification and fermentation of hard wood by a white-rot fungus, Phlebia sp. MG-60. Bioresour Technol 126:137–141

    Article  CAS  PubMed  Google Scholar 

  • Kankılıç GB, Metin AÜ, Tüzün İ (2016) Phragmites australis: an alternative biosorbent for basic dye removal. Ecol Eng 86:85–94

    Article  Google Scholar 

  • Kirby JJ, Rayner AD (1989) The deterioration of thatched roofs. Int Biodeterior 25:21–26

    Article  Google Scholar 

  • Kirby N, Marchant R, McMullan G (2000) Decolourisation of synthetic textile dyes by Phlebia tremellosa. FEMS Microbiol Lett 188:93–96

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl Environ Microb 32:192–194

    CAS  Google Scholar 

  • Kirk TK, Tien M, Kersten PJ, Kalyanarama B, Hammel KE, Farrell RL (1990) Lignin peroxidase from fungi Phanerochaete chrysosporium. Method Enzymol 188:159–171

    Article  CAS  Google Scholar 

  • Komulainen M, Simi P, Hagelberg E, Ikonen I, Lyytinen S (2008) Reed energy—possibilities of using the common reed for energy generation in southern Finland. Turku University of Applied Sciences. Report 67

  • Kuuskeri J, Mäkelä MR, Isotalo J, Oksanen I, Lundell T (2015) Lignocellulose-converting enzyme activity profiles correlate with molecular systematics and phylogeny grouping in the incoherent genus Phlebia (Polyporales, Basidiomycota). BMC Microbiol 15:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuuskeri J, Häkkinen M, Laine P, Smolander OP, Tamene F, Miettinen S, Nousiainen MK, Auvinen P, Lundell T (2016) Time-scale dynamics of proteome and transcriptome of the white-rot fungus Phlebia radiata: growth on spruce wood and decay effect on lignocellulose. Biotechnol Biofuels 9:192

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AH, Jang Y, Kim GH, Kim JJ, Lee SS, Ahn BJ (2017) Decolorizing an anthraquinone dye by Phlebia brevispora: intra-species characterization. Eng Life Sci 17:125–131

    Article  CAS  Google Scholar 

  • Liers C, Arnstadt T, Ullrich R, Hofrichter M (2011) Patterns of lignin degradation and oxidative enzyme secretion by different wood-and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood. FEMS Microbiol Ecol 78:91–102

    Article  CAS  PubMed  Google Scholar 

  • Lizasoain J, Rincón M, Theuretzbacher F, Enguídanos R, Nielsen PJ, Potthast A, Zweckmair T, Gronauer A, Bauer A (2016) Biogas production from reed biomass: effect of pretreatment using different steam explosion conditions. Biomass Bioenergy 95:84–91

    Article  CAS  Google Scholar 

  • Ma M, Zhu W, Wang Z, Witkamp GJ (2003) Accumulation, assimilation and growth inhibition of copper on freshwater alga Scenedesmus subspicatus 86.81 SAG in the presence of EDTA and fulvic acid. Aquat Toxicol 63:221–228

    Article  CAS  PubMed  Google Scholar 

  • Mäkelä MR, Lundell T, Hatakka A, Hildén K (2013) Effect of copper, nutrient nitrogen, and wood-supplement on the production of lignin-modifying enzymes by the white-rot fungus Phlebia radiata. Fungal Biol-UK 117:62–70

    Article  Google Scholar 

  • Markou G, Mitrogiannis D, Muylaert K, Çelekli A, Bozkurt H (2016) Biosorption and retention of orthophosphate onto Ca (OH) 2-pretreated biomass of Phragmites sp. J Environ Sci 45:49–59

    Article  Google Scholar 

  • Moilanen AM, Lundell T, Vares T, Hatakka A (1996) Manganese and malonate are individual regulators for the production of lignin and manganese peroxidase isozymes and in the degradation of lignin by Phlebia radiata. Appl Microbiol Biot 45:792–799

    Article  CAS  Google Scholar 

  • Mori T, Kondo R (2002) Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol Lett 216:223–227

    Article  CAS  PubMed  Google Scholar 

  • Nakasone KK (1996) Morphological and molecular studies on Auriculariopsis albomellea and Phlebia albida and a reassessment of A. ampla. Mycologia 88:762–775

    Article  Google Scholar 

  • Panda SK, Choudhury S (2005) Changes in nitrate reductase activity and oxidative stress response in the moss Polytrichum commune subjected to chromium, copper and zinc phytotoxicity. Braz J Plant Physiol 17:191–197

    Article  CAS  Google Scholar 

  • Périé FH, Gold MH (1991) Manganese regulation of manganese peroxidase expression and lignin degradation by the white rot fungus Dichomitus squalens. Appl Environ Microb 57:2240–2245

    Google Scholar 

  • Quek U, Förster J (1993) Trace metals in roof runoff. Water Air Soil Pollut 68:373–389

    Article  CAS  Google Scholar 

  • Reid ID (1989) Optimization of solid-state fermentation for selective delignification of aspen wood with Phlebia tremellosa. Enzyme Microb Tech 11:804–809

    Article  CAS  Google Scholar 

  • Ríos S, Eyzaguirre J (1992) Conditions for selective degradation of lignin by the fungus Ganoderma australis. Appl Microbiol Biot 37:667–669

    Article  Google Scholar 

  • Rodriguez CS, Santoro R, Cameselle C, Sanroman A (1997) Laccase production in semi-solid cultures of Phanerochaete chrysosporium. Biotechnol Lett 19:995–998

    Article  CAS  Google Scholar 

  • Roy-Arcand L, Archibald FS (1991) Direct dechlorination of chlorophenolic compounds by laccases from Trametes (Coriolus) versicolor. Enzym Microb Technol 13:194–203

    Article  CAS  Google Scholar 

  • Rodewald-Rudescu L (1974) Das Schilfrohr. Phragmites communis Trin. Die Binnengewässer, Vol. 27. E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart

  • Saha BC, Kennedy GJ, Qureshi N, Cotta MA (2017) Biological pretreatment of corn stover with Phlebia brevispora NRRL-13108 for enhanced enzymatic hydrolysis and efficient ethanol production. Biotechnol Prog 33:365–374

    Article  CAS  PubMed  Google Scholar 

  • Saloheimo M, Niku-Paavola ML, Knowles JKC (1991) Isolation and structural analysis of the laccase gene from the lignindegrading fungus Phlebia radiata. J Gen Microbiol 137:1537–1544

  • Seidel B (2007) Unterm Reetdach. Husum-Verlag, Hamburg

    Google Scholar 

  • Sharma RK, Arora DS (2010) Production of lignocellulolytic enzymes and enhancement of in vitro digestibility during solid state fermentation of wheat straw by Phlebia floridensis. Bioresour Technol 101:9248–9253

    Article  CAS  PubMed  Google Scholar 

  • Singhal V, Rathore VS (2001) Effects of Zn2+ and Cu2+ on growth, lignin degradation and ligninolytic enzymes in Phanerochaete chrysosporium. World J Microbiol Biotechnol 17:235–240

    Article  CAS  Google Scholar 

  • Stajić M, Vukojević J (2011) Interaction of trace elements and ligninolytic enzymes in Pleurotus eryngii. Biol Trace Elem Res 143:1202–1208

    Article  PubMed  Google Scholar 

  • Stajic M, Persky L-L, Hadar Y, Friesem D, Duletic-Lausevic S, Vukojevic J (2005) Influence of selected microelements on the laccase and peroxidases production by Pleurotus eryngii (DC.: Fr.) Quel. in submerged cultures. Int J Medicinal Mushrooms 7:470

    Article  Google Scholar 

  • Tao XX, Pan LY, Shi KY, Yin SD, Luo ZF (2009) Bio-solubilization of Chinese lignite I: extra-cellular protein analysis. Int J Min Sci Technol 19:358–362

    CAS  Google Scholar 

  • Tien M, Kirk TK, Willis A, Wood STK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Method Enzymol 161:238–249

    Article  CAS  Google Scholar 

  • Uzunovic A, Khadempour L, Leung K (2008) Heat disinfestation of decay fungi found in post-mountain pine beetle wood. Pacific Forestry Centre, Canadian Forest Service, Vancouver

    Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of 14C-ring-labelled synthetic lignin by three Phlebia tremellosa strains. Appl Environ Microb 60:569–575

    CAS  Google Scholar 

  • Wichmann S, Köbbing JF (2015) Common reed for thatching—a first review of the European market. Ind Crop Prod 77:1063–1073

    Article  Google Scholar 

  • Wöhler-Geske A, Moschner CR, Gellerich A, Militz H, Greef JM, Hartung E (2016) Provenances and properties of thatching reed (Phragmites australis). Landbauforschung-Ger 66:1–10

    Google Scholar 

  • Zimmermann G (2006) Schäden an Dachdeckungen. Schadfreies Bauen, Band. Fraunhofer IRB Verlag, Stuttgart, p 40

    Google Scholar 

Download references

Acknowledgments

R. Jack is gratefully acknowledged for the help in preparing the manuscript.

Funding

This study was funded by the European Regional Development Fund, the Land Mecklenburg-Western Pomerania, and the professional association of thatchers in Mecklenburg-Western Pomerania (grant number V220-630-08 TFMV-O-A 632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rovena Dosdall.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dosdall, R., Preuß, F., Hahn, V. et al. Decay of the water reed Phragmites communis caused by the white-rot fungus Phlebia tremellosa and the influence of some environmental factors. Appl Microbiol Biotechnol 102, 345–354 (2018). https://doi.org/10.1007/s00253-017-8582-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8582-0

Keywords

Navigation