Skip to main content
Log in

Transcriptome profiling and digital gene expression analysis of the skin of Dybowski’s frog (Rana dybowskii) exposed to Aeromonas hydrophila

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Recently, populations of Rana dybowskii, an important amphibian species in Northeast China, have decreased, mainly owing to the disease caused by Aeromonas hydrophila. However, effective control methods have not yet been developed. In order to explore the immune responses of R. dybowskii upon exposure to A. hydrophila infection, Illumina high-throughput transcriptome sequencing and digital gene expression (DGE) technology were employed to investigate transcriptomic changes in the skin of R. dybowskii exposed to A. hydrophila. In this work, a total of 26,244,446 transcriptome sequencing reads were obtained and assembled into 109,089 unique unigenes using de novo assembly, and a total of 37,105 unigenes (34.0%) were functionally annotated against the non-redundant (Nr), Swiss-Prot, Cluster of Orthologous Groups of Proteins (COG), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) databases. Gene expression changes in the skin tissue of R. dybowskii exposed to A. hydrophila were investigated by a tag-based DGE system, and a total of 1435 significantly differentially expressed genes were identified, including 460 that were up-regulated and 975 that were down-regulated, indicating a large change in the host transcriptome profile exposed to A. hydrophila. Among these, 478 genes were associated with immune-relevant pathways, metabolic pathways, cellular components, growth, migration, and muscle and hormone signaling pathways. We confirmed the differential expression of 106 immune-relevant genes associated with innate and adaptive immune responses. Our data provide a fairly comprehensive molecular biology background for the deeper understanding of the amphibian immune system following A. hydrophila infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986–995

    Article  CAS  PubMed  Google Scholar 

  • Basir YJ, Conlon JM (2003) Peptidomic analysis of the skin secretions of the pickerel frog Rana palustris identifies six novel families of structurally related peptides. Peptides 24:379–383

    Article  CAS  PubMed  Google Scholar 

  • Basir YJ, Knoop FC, Dulka J, Conlon JM (2000) Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from the skin secretions of the pickerel frog, Rana palustris. Biochim Biophys Acta 1543:95–105

    Article  CAS  PubMed  Google Scholar 

  • Beck D, Ayers S, Wen J, Brandl MB, Pham TD, Webb P, Chang CC, Zhou X (2011) Integrative analysis of next generation sequencing for small non-coding RNAs and transcriptional regulation in myelodysplastic syndromes. BMC Med Genet 4:19

    CAS  Google Scholar 

  • Beutler B (2004) Inferences, questions and possibilities in Toll-like receptor signaling. Nature 430:257–263

    Article  CAS  PubMed  Google Scholar 

  • Birol I, Behsaz B, Hammond SA, Kucuk E, Veldhoen N, Helbing CC (2015) De novo transcriptome assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis tadpole livers for comparative genomics without reference genomes. PLoS One 10:e0130720

    Article  PubMed  PubMed Central  Google Scholar 

  • Carey C, Cohen N, Rollins-Smith L (1999) Amphibian declines: an immunological perspective. Dev Comp Immunol 23:459–472

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Sonnevend A, Patel M, Camasamudram V, Nowotny N, Zilahi E, Iwamuro S, Nielsen PF, Pal T (2003) A melittin-related peptide from the skin of the Japanese frog, Rana tagoi, with antimicrobial and cytolytic properties. Biochem Biophys Res Commun 306:496–500

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Kolodziejek J, Nowotny N (2004) Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta 1696:1–14

    Article  CAS  PubMed  Google Scholar 

  • Conlon JM, Iwamuro S, King JD (2009) Dermal cytolytic peptides and the system of innate immunity in anurans. Ann N Y Acad Sci 1163:75–82

    Article  CAS  PubMed  Google Scholar 

  • Cook DN, Pisetsky DS, Schwartz DA (2004) Toll-like receptors in the pathogenesis of human disease. Nat Immunol 5:975–979

    Article  CAS  PubMed  Google Scholar 

  • Das A, Sahoo PK, Mohanty BR, Jena JK (2011) Pathophysiology of experimental Aeromonas hydrophila infection in Puntius sarana: early changes in blood and aspects of the innate immune-related gene expression in survivors. Vet Immunol Immunopathol 142:207–218

    Article  CAS  PubMed  Google Scholar 

  • Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerg Infect Dis 5:735–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda TF Jr, Vanhoye D, Nicolas P (2002) Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol Biol Evol 19:858–864

    Article  CAS  PubMed  Google Scholar 

  • Ganz T (2002) Defensins: antimicrobial peptides of innate immunity. Nat Rev Immunol 3:710–720

    Article  Google Scholar 

  • Hegedüs Z, Zakrzewska A, Ágoston VC, Ordas A, Rácz P, Minkd M, Spainka HP, Meijera AH (2009) Deep sequencing of the zebrafish transcriptome response to Mycobacterium infection. Mol Immunol 46:2918–2930

    Article  PubMed  Google Scholar 

  • Huys G, Pearson M, Kämpfer P, Denys R, Cnockaert M, Inglis V, Swings J (2003) Aeromonas hydrophila subsp. ranae subsp. nov., isolated from septicaemic farmed frogs in Thailand. Int J Syst Evol Microbiol 53:885–891

    Article  CAS  PubMed  Google Scholar 

  • Janssens S, Beyaert R (2003) Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 16:637–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin LL, Li Q, Song SS, Feng K, Zhang DB, Wang QY, Chen YH (2009) Characterization of antimicrobial peptides isolated from the skin of the Chinese frog, Rana dybowskii. Comp Biochem Physiol B Biochem Mol Biol 154:174–178

    Article  PubMed  Google Scholar 

  • Kim SS, Shim MS, Chung J, Lim DY, Lee B (2007) Purification and characterization of antimicrobial peptides from the skin secretion of Rana dybowskii. Peptides 28:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Larsen PE, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, Collart FR (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marguerat S, Wilhelm BT, Bähler J (2008) Next-generation sequencing: applications beyond genomes. Biochem Soc Trans 36:1091–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2010) Sequencing technologies-the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  CAS  PubMed  Google Scholar 

  • Ordas A, Hegedus Z, Henkel CV, Stockhammer OW, Butler D, Jansen HJ, Racz P, Mink M, Spaink HP, Meijer AH (2011) Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. Fish Shellfish Immunol 31:716–724

    Article  CAS  PubMed  Google Scholar 

  • Price SJ, Garner TWJ, Balloux F, Ruis C, Paszkiewicz KH, Moore K, Griffiths AGF (2015) A de novo assembly of the common frog (Rana temporaria) transcriptome and comparison of transcription following exposure to Ranavirus and Batrachochytrium dendrobatidis. PLoS One 10:e0130500

    Article  PubMed  PubMed Central  Google Scholar 

  • Pridgeon JW, Klesius PH, Mu X, Song L (2011) An in vitro screening method to evaluate chemicals as potential chemotherapeutants to control Aeromonas hydrophila infection in channel catfish. J Appl Microbiol 111:114–124

    Article  CAS  PubMed  Google Scholar 

  • Reshmy V, Preeji V, Parvin A, Santhoshkumar K, George S (2010) Molecular cloning of a novel bradykinin-related peptide from the skin of Indian bronzed frog Hylarana temporalis. Genomics Insights 3:23–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rigney MM, Zilinsky JW, Rouf MA (1978) Pathogenicity of Aeromonas hydrophila in red leg disease in frogs. Curr Microbiol 1:175–179

    Article  CAS  PubMed  Google Scholar 

  • Rollins-Smith L (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599

    Article  CAS  PubMed  Google Scholar 

  • Shang D, Yu F, Li J, Zheng J, Zhang L, Li Y (2009) Molecular cloning of cDNAs encoding antimicrobial peptide precursors from the skin of the Chinese brown frog, Rana chensinensis. Zool Sci 26:220–226

    Article  CAS  PubMed  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genomics 12:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmaco M, Mangoni ML, Boman A, Barra D, Boman HG (1998) Experimental infections of Rana esculenta with Aeromonas hydrophila: a molecular mechanism for the control of the normal flora. Scand J Immunol 48:357–363

    Article  CAS  PubMed  Google Scholar 

  • Sin Y, Zhou M, Chen W, Wang L, Chen T, Walker B, Shaw C (2008) Skin bradykinin-related peptides (BRPs) and their biosynthetic precursors (kininogens): comparisons between various taxa of Chinese and North American ranid frogs. Peptides 29:393–403

    Article  CAS  PubMed  Google Scholar 

  • Sousa JC, Berto RF, Gois EA, Fontenele-Cardi NC, Honório JER, Konno K, Richardson M, Rocha MF, Camargo AA, Pimenta DC, Cardi BA, Carvalho KM (2009) Leptoglycin: a new glycine/leucine-rich antimicrobial peptide isolated from the skin secretion of the South American frog Leptodactylus pentadactylus (Leptodactylidae). Toxicon 54:23–32

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    Article  CAS  PubMed  Google Scholar 

  • Tao F, Fan M, Zhao W, Lin Q, Ma R (2011) A novel cationic ribonuclease with antimicrobial activity from Rana dybowskii. Biochem Genet 49:369–384

    Article  CAS  PubMed  Google Scholar 

  • Van Hiel MB, Van Wielendaele P, Temmerman L, Van Soest S, Vuerinckx K, Huybrechts R, Broeck JV, Simonet G (2009) Identification and validation of housekeeping genes in brains of the desert locust Schistocerca gregaria under different developmental conditions. BMC Mol Biol 10:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogel H, Altincicek B, Glöckner G, Vilcinskas A (2011) A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12:308

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, Liu SS (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodhams DC, Vredenburg VT, Simon M, Billheimer D, Shakhtour B, Shyrd Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007a) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398

    Article  Google Scholar 

  • Woodhams DC, Ardipradja K, Alford RA, Marantelli G, Reinert LK, Rollins-Smith LA (2007b) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417

    Article  Google Scholar 

  • Wu T, Qin Z, Zhou X, Feng Z, Du Y (2010) Transcriptome profile analysis of floral sex determination in cucumber. J Plant Physiol 167:905–913

    Article  CAS  PubMed  Google Scholar 

  • Xiang LX, He D, Dong WR, Zhang YW, Shao JZ (2010) Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish. BMC Genomics 11:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Takeda K (2010) Current views of Toll-like receptor signaling pathways. Gastroenterol Res Pract 2010:240365

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Wang X, Liu X, Wu J, Liu C, Gong W, Zhao Z, Hong J, Lin D, Wang Y, Lai R (2009) Antioxidant peptidomics reveals novel skin antioxidant system. Mol Cell Proteomics 8:571–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Gang Xu or Xiang-Hong Xiao.

Ethics declarations

Funding

This study was funded by the National Natural Science Foundation of China (grant 31672309).

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

ESM 1

(PDF 604 kb)

ESM 2

(XLSM 22435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YG., Chai, LH., Shi, W. et al. Transcriptome profiling and digital gene expression analysis of the skin of Dybowski’s frog (Rana dybowskii) exposed to Aeromonas hydrophila . Appl Microbiol Biotechnol 101, 5799–5808 (2017). https://doi.org/10.1007/s00253-017-8385-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8385-3

Keywords

Navigation