Skip to main content

Advertisement

Log in

The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The neutrophil-activating protein of Helicobacter pylori (HP-NAP) has been identified as a modulator with anti-Th2 inflammation activity, and cholera toxin B (CTB) is a mucosal adjuvant that can also induce antigen tolerance. In this study, we constructed a CTB-NAP fusion protein on the surface of Bacillus subtilis spore and evaluate the efficiency of oral administration of the recombinant CTB-NAP spores in preventing asthma in mice. Oral administration of recombinant CTB or CTB-NAP spores significantly decreased serum ovalbumin (OVA)-specific IgE (p < 0.001) and increased fecal IgA (p < 0.01) compared to the treatment with non-recombinant spores. Oral administration of recombinant CTB or CTB-NAP spores induced IL-10 and IFN-γ expression and reduced IL-4 levels in bronchoalveolar lavage fluid (BALF). Moreover, CTB and CTB-NAP spores reduced the eosinophils in BALF and inflammatory cell infiltration in the lungs. Furthermore, CD4+CD25+Foxp3+ Tregs in splenocytes were significantly increased in mice treated with recombinant CTB or CTB-NAP spores. The number of CD4+CD25+Foxp3+ Tregs caused by CTB-NAP was higher than that by CTB alone. Our study indicated that B. subtilis spores with surface expression of subunit CTB or CTB-NAP could inhibit OVA-induced allergic inflammation in mice. The attenuated inflammation was attributed to the induction of CD4+CD25+Foxp3+ Tregs and IgA. Moreover, the fusion protein CTB-NAP demonstrated a better efficiency than CTB alone in inhibiting the inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amberbir A, Medhin G, Erku W, Alem A, Simms R, Robinson K, Fogarty A, Britton J, Venn A, Davey G (2011) Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin Exp Allergy 41:1422–1430. doi:10.1111/j.1365-2222.2011.03831.x

    Article  CAS  PubMed  Google Scholar 

  • Amedei A, Cappon A, Codolo G, Cabrelle A, Polenghi A, Benagiano M, Azzurri A, D’Elios MM, Del Prete G, de Bernard M (2006) The neutrophil-activating protein of Helicobacter pylori promotes Th1 immune responses. J Clin Invest 116:1092–1101. doi:10.1172/JCI27177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baecher-Allan C, Viglietta V, Hafler DA (2004) Human CD4+CD25+ regulatory T cells. Semin Immunol 16:89–98. doi:10.1016/j.smim.2003.12.005

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2008) Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 8:183–192. doi:10.1038/nri2254

    Article  CAS  PubMed  Google Scholar 

  • Basset C, Thiam F, Martino CD, Holton J, Clements JD, Kohli E (2010) Cholera-like enterotoxins and regulatory T cells. Toxins (Basel) 2:1774–1795. doi:10.3390/toxins2071774

    Article  CAS  Google Scholar 

  • Bergerot I, Ploix C, Petersen J, Moulin V, Rask C, Fabien N, Lindblad M, Mayer A, Czerkinsky C, Holmgren J, Thivolet C (1997) A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci U S A 94:4610–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser MJ, Atherton JC (2004) Helicobacter pylori persistence: biology and disease. J Clin Invest 113:321–333. doi:10.1172/JCI20925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blaser MJ, Chen Y, Reibman J (2008) Does Helicobacter pylori protect against asthma and allergy? Gut 57:561–567. doi:10.1136/gut.2007.133462

    Article  PubMed  PubMed Central  Google Scholar 

  • Bublin M, Hoflehner E, Wagner B, Radauer C, Wagner S, Hufnagl K, Allwardt D, Kundi M, Scheiner O, Wiedermann U, Breiteneder H (2007) Use of a genetic cholera toxin B subunit/allergen fusion molecule as mucosal delivery system with immunosuppressive activity against Th2 immune responses. Vaccine 25:8395–8404. doi:10.1016/j.vaccine.2007.10.003

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Blaser MJ (2008) Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis 198:553–560. doi:10.1086/590158

    Article  PubMed  PubMed Central  Google Scholar 

  • Codolo G, Mazzi P, Amedei A, Del PG, Berton G, D’Elios MM, de Bernard M (2008) The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cell Microbiol 10:2355–2363. doi:10.1111/j.1462-5822.2008.01217.x

    Article  CAS  PubMed  Google Scholar 

  • Cutting SM, Hong HA, Baccigalupi L, Ricca E (2009) Oral vaccine delivery by recombinant spore probiotics. Int Rev Immunol 28:487–505. doi:10.3109/08830180903215605

    Article  CAS  PubMed  Google Scholar 

  • D’Elios MM, Codolo G, Amedei A, Mazzi P, Berton G, Zanotti G, Del PG, de Bernard M (2009) Helicobacter pylori, asthma and allergy. FEMS Immunol Med Microbiol 56:1–8. doi:10.1111/j.1574-695X.2009.00537.x

    Article  PubMed  Google Scholar 

  • Del PG, Chiumiento L, Amedei A, Piazza M, D’Elios MM, Codolo G, de Bernard M, Masetti M, Bruschi F (2008) Immunosuppression of TH2 responses in Trichinella spiralis infection by Helicobacter pylori neutrophil-activating protein. J Allergy Clin Immunol 122:908–913. doi:10.1016/j.jaci.2008.08.016

    Article  Google Scholar 

  • Driks A (1999) Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edlmayr J, Niespodziana K, Focke-Tejkl M, Linhart B, Valenta R (2011) Allergen-specific immunotherapy: towards combination vaccines for allergic and infectious diseases. Curr Top Microbiol Immunol 352:121–140. doi:10.1007/82_2011_130

    CAS  PubMed  Google Scholar 

  • Finkelman FD (2007) Anaphylaxis: lessons from mouse models. J Allergy Clin Immunol 120:506–515, 516–7. doi:10.1016/j.jaci.2007.07.033

    Article  CAS  PubMed  Google Scholar 

  • Gloudemans AK, Lambrecht BN, Smits HH (2013) Potential of immunoglobulin A to prevent allergic asthma. Clin Dev Immunol:542091. doi:10.1155/2013/542091

  • Kay AB (2001) Allergy and allergic diseases. First of two parts. N Engl J Med 344:30–37. doi:10.1056/NEJM200101043440106

    Article  CAS  PubMed  Google Scholar 

  • Lefevre M, Racedo SM, Ripert G, Housez B, Cazaubiel M, Maudet C, Jüsten P, Marteau P, Urdaci MC (2015) Probiotic strain Bacillus subtilis CU1 stimulates immune system of elderly during common infectious disease period: a randomized, double-blind placebo-controlled study. Immun Ageing 12:24. doi:10.1186/s12979-015-0051-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Shieh CC, Wang JY (2008) The functional insufficiency of human CD4+CD25 high T-regulatory cells in allergic asthma is subjected to TNF-alpha modulation. Allergy 63:67–74. doi:10.1111/j.1398-9995.2007.01526.x

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Exposito I, Jarvinen KM, Castillo A, Seppo AE, Song Y, Li XM (2011) Maternal peanut consumption provides protection in offspring against peanut sensitization that is further enhanced when co-administered with bacterial mucosal adjuvant. Food Res Int 44:1649–1656. doi:10.1016/j.foodres.2011.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazanec MB, Nedrud JG, Kaetzel CS, Lamm ME (1993) A three-tiered view of the role of IgA in mucosal defense. Immunol Today 14:430–435. doi:10.1016/0167-5699(93)90245-G

    Article  CAS  PubMed  Google Scholar 

  • Monroe A, Setlow P (2006) Localization of the transglutaminase cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J Bacteriol 188:7609–7616. doi:10.1128/JB.01116-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. [J] Blood 112(3):610–618. doi:10.1182/blood-2008-01-135319

    Article  CAS  Google Scholar 

  • Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64:548–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson WL, Setlow P (1990) Sporulation, germination and outgrowth. In: Harwood C, Cutting S (eds) Molecular biological methods for Bacillus. John Wiley and Sons, Chichester, pp 391–450

    Google Scholar 

  • Palomares O, Yaman G, Azkur AK, Akkoc T, Akdis M, Akdis CA (2010) Role of Treg in immune regulation of allergic diseases. Eur J Immunol 40:1232–1240. doi:10.1002/eji.200940045

    Article  CAS  PubMed  Google Scholar 

  • Pasquier B, Launay P, Kanamaru Y, Moura IC, Pfirsch S, Ruffie C, Hénin D, Benhamou M, Pretolani M, Blank U, Monteiro RC (2005) Identification of FcalphaRI as an inhibitory receptor that controls inflammation: dual role of FcRgamma ITAM. Immunity 22:31–42. doi:10.1016/j.immuni.2004.11.017

    CAS  PubMed  Google Scholar 

  • Puchelle E, Zahm JM, Girard F, Bertrand A, Polu JM, Aug F, Sadoul P (1980) Mucociliary transport in vivo and in vitro. Relations to sputum properties in chronic bronchitis. Eur J Respir Dis 61:254–264

    CAS  PubMed  Google Scholar 

  • Smits HH, Gloudemans AK, van Nimwegen M, Willart MA, Soullie T, Muskens F, de Jong EC, Boon L, Pilette C, Johansen FE, Hoogsteden HC, Hammad H, Lambrecht BN (2009) Cholera toxin B suppresses allergic inflammation through induction of secretory IgA. Mucosal Immunol 2:331–339. doi:10.1038/mi.2009.16

    Article  CAS  PubMed  Google Scholar 

  • Stanford M, Whittall T, Bergmeier LA, Lindblad M, Lundin S, Shinnick T, Mizushima Y, Holmgren J, Lehner T (2004) Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet’s disease. Clin Exp Immunol 137:201–208. doi:10.1111/j.1365-2249.2004.02520.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska A, Kulus M, Demkow U (2013) Frequency and activation of CD4+CD25 FoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol 162:16–24. doi:10.1159/000350769

    Article  CAS  PubMed  Google Scholar 

  • Sun JB, Czerkinsky C, Holmgren J (2012) B lymphocytes treated in vitro with antigen coupled to cholera toxin B subunit induce antigen-specific Foxp3(+) regulatory T cells and protect against experimental autoimmune encephalomyelitis. J Immunol 188:1686–1697. doi:10.4049/jimmunol.1101771

    Article  CAS  PubMed  Google Scholar 

  • Tavares BM, Souza RD, Paccez JD, Luiz WB, Ferreira EL, Cavalcante RC, Ferreira RC, Ferreira LC (2014) Gut adhesive Bacillus subtilis spores as a platform for mucosal delivery of antigens. Infect Immun 82:1414–1423. doi:10.1128/IAI.01255-13

    Article  Google Scholar 

  • Taye B, Enquselassie F, Tsegaye A, Medhin G, Davey G, Venn A (2015) Is Helicobacter pylori infection inversely associated with atopy? A systematic review and meta-analysis. Clin Exp Allergy 45:882–890. doi:10.1111/cea.12404

    Article  CAS  PubMed  Google Scholar 

  • Waserman S, Nair P, Snider D, Conway M, Jayaram L, McCleary LM, Dolovich J, Hargreave FE, Marshall JS (2012) Local and systemic immunological parameters associated with remission of asthma symptoms in children. Allergy Asthma Clin Immunol 8:16. doi:10.1186/1710-1492-8-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RC, Gibbons RJ (1972) Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177:697–699

    Article  CAS  PubMed  Google Scholar 

  • Wu XC, Lee W, Tran L, Wong SL (1991) Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 173:4952–4958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zevit N, Balicer RD, Cohen HA, Karsh D, Niv Y, Shamir R (2012) Inverse association between Helicobacter pylori and pediatric asthma in a high-prevalence population. Helicobacter 17:30–35. doi:10.1111/j.1523-5378.2011.00895.x

    Article  PubMed  Google Scholar 

  • Zha W, Su M, Huang M, Cai J, Du Q (2016) Administration of pigment epithelium-derived factor inhibits airway inflammation and remodeling in chronic OVA-induced mice via VEGF suppression. Allergy Asthma Immunol Res 8:161–169. doi:10.4168/aair.2016.8.2.161

    Article  PubMed  Google Scholar 

  • Zhao J, Yeong LH, Wong WS (2007) Dexamethasone alters bronchoalveolar lavage fluid proteome in a mouse asthma model. Int Arch Allergy Immunol 142:219–229. doi:10.1159/000097024

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Huang Y, Liang B, Dong H, Yao S, Chen Y, Xie Y, Long Y, Gong S, Zhou Z (2017) Systemic and mucosal pre-administration of recombinant Helicobacter pylori neutrophil-activating protein ovalbumin-induced allergic asthma in mice. FEMS Microbiology Letters: fnw:288. doi:10.1093/femsle/fnw288

  • Zhou Z, Gong S, Li XM, Yang Y, Guan R, Zhou S, Yao S, Xie Y, Ou Z, Zhao J, Liu Z (2015) Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores. J Med Microbiol 64:104–110. doi:10.1099/jmm.0.076430-0

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X (2008) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825. doi:10.1016/j.vaccine.2008.02.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was founded by the Guangdong Science and Technology Foundation (no. 2014A020212013 and no. 2016A020215013), Natural Science Foundation of Guangdong (no. 8451012001001570 and no. 915101200F009), National Natural Science Foundation of China (no. 30801054), and Science and Technology Foundation of Guangzhou (no. 201707010010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenwen Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Huang, Y., Yao, S. et al. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice. Appl Microbiol Biotechnol 101, 5819–5829 (2017). https://doi.org/10.1007/s00253-017-8370-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8370-x

Keywords

Navigation