Skip to main content

Advertisement

Log in

Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cold atmospheric pressure plasma (CAP) has potential to be utilized as an alternative method for sterilization in food industries without thermal damage or toxic residues. In contrast to the bactericidal effects of CAP, information regarding the efficacy of CAP against eukaryotic microorganisms is very limited. Therefore, herein we investigated the effects of CAP on the budding yeast Saccharomyces cerevisiae, with a focus on the cellular response to CAP. The CAP treatment caused oxidative stress responses including the nuclear accumulation of the oxidative stress responsive transcription factor Yap1, mitochondrial fragmentation, and enhanced intracellular oxidation. Yeast cells also induced the expression of heat shock protein (HSP) genes and formation of Hsp104 aggregates when treated with CAP, suggesting that CAP denatures proteins. As phenomena unique to eukaryotic cells, the formation of cytoplasmic mRNP granules such as processing bodies and stress granules and changes in the intracellular localization of Ire1 were caused by the treatment with CAP, indicating that translational repression and endoplasmic reticulum (ER) stress were induced by the CAP treatment. These results suggest that the fungicidal effects of CAP are attributed to the multiple severe stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen SA, Clark W, Mccaffery JM, Zhen C, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2. doi:10.1186/1754-6834-3-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Balagopal V, Parker R (2009) Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol 21:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky JL, Skach WR (2011) Protein folding and quality control in the endoplasmic reticulum: recent lessons from yeast and mammalian cell systems. Curr Opin Cell Biol 23:464–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buben I, Melichercíková NN, Svitáková R (1999) Problems associated with sterilization using ethylene oxide. Residues in treated materials. Cent Eur J Public Health 7:197–202

    CAS  PubMed  Google Scholar 

  • Buchan JR, Parker R (2009) Eukaryotic stress granules: the ins and outs of translation. Mol Cell 36:932–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR, Muhlrad D, Parker R (2008) P bodies promote stress granule assembly in Saccharomyces cerevisiae. J Cell Biol 183:441–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR, Yoon JH, Parker R (2011) Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. J Cell Sci 124:228–239

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Lee H, Lee J, Hong J, Kim G (2013) Low-temperature atmospheric plasma increases the expression of anti-aging genes of skin cells without causing cellular damages. Arch Dermatol Res 305:133–140

    Article  PubMed  Google Scholar 

  • Delaunay A, Pflieger D, Barrault MB, Vinh J, Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111:471–481

    Article  CAS  PubMed  Google Scholar 

  • Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 2:64. doi:10.3389/fonc.2012.00064

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng H, Wang R, Sun P, Wu H, Liu Q, Fang J, Zhu W, Li F, Zhang J (2010) A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants. Appl Phys Lett 97:131501–131503

    Article  Google Scholar 

  • Fernández A, Noriega E, Thompson A (2013) Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology. Food Microbiol 33:24–29

    Article  PubMed  Google Scholar 

  • Fridman G, Friedman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5:503–533

    Article  CAS  Google Scholar 

  • Gaunt L, Beggs C, Georghiou G (2006) Bactericidal action of the reactive species produced by gas-discharge nonthermal plasma at atmospheric pressure: a review. IEEE Trans Plasma Sci 34:1257–1269

    Article  CAS  Google Scholar 

  • Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82

    Article  CAS  PubMed  Google Scholar 

  • Groušl T, Ivanov P, Frydlova I, Vasicová P, Janda F, Vojtová J, Malínská K, Malcová I, Nováková L, Janošková D, Valášek L, Hašek J (2009) Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122:2078–2088

    Article  PubMed  Google Scholar 

  • Hoffmann C, Berganza C, Zhang J (2013) Cold atmospheric plasma, methods of production and application in dentistry and oncology. Med Gas Res 3:21. doi:10.1186/2045-9912-3-21

    Article  PubMed  PubMed Central  Google Scholar 

  • Iwaki A, Izawa S (2012) Acidic stress induces the formation of P-bodies but not stress granules with mild attenuation of bulk translation in Saccharomyces cerevisiae. Biochem J 446:225–233

    Article  CAS  PubMed  Google Scholar 

  • Iwaki A, Kawai T, Yamamoto Y, Izawa S (2013) Biomass conversion inhibitors, furfural and 5-hydroxymethylfurfural, induce the formation of mRNP granules and attenuate translation activity in yeast. Appl Environ Microbiol 79:1661–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izawa S, Kita T, Ikeda K, Inoue Y (2008) Heat shock and ethanol stress provoke distinctly different responses in 3′-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae. Biochem J 88:277–282

    Google Scholar 

  • Izawa S, Kita T, Ikeda K, Miki T, Inoue Y (2007) Formation of cytoplasmic P-bodies in sake yeast during Japanese sake brewing and wine making. Biosci Biotechnol Biochem 71:2800–2807

    Article  CAS  PubMed  Google Scholar 

  • Joshi SG, Cooper M, Yost A, Paff M, Ercan UK, Fridman G, Brooks AD (2011) Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli. Antimicrob Agents Chemother 55:1053–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahana JA, Schlenstedt G, Evanchuk DM, Geiser JR, Hoyt MA, Silver PA (1998) The yeast dynactin complex is involved in portioning the mitotic spindle between mother and daughter cells during anaphase B. Mol Biol Cell 9:1741–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajiwara K, Muneoka T, Watanabe Y, Karashima T, Kitagaki H, Funato K (2012) Perturbation of sphingolipid metabolism induces endoplasmic reticulum stress-mediated mitochondrial apoptosis in budding yeast. Mol Microbiol 86:1246–1261

    Article  CAS  PubMed  Google Scholar 

  • Kamo K, Takabatake A, Inoue Y, Izawa S (2012) Temperature dependent N-glycosylation of plasma membrane heat shock protein Hsp30p in Saccharomyces cerevisiae. Biochem Biophys Res Commun 420:119–123

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Yamamoto Y, Izawa S (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 28:339–347

    Article  CAS  PubMed  Google Scholar 

  • Kelley R, Ideker T (2009) Genome-wide fitness and expression profiling implicate Mga2 in adaptation to hydrogen peroxide. PLoS Genet 5:e1000488. doi:10.1371/journal.pgen.1000488

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimata Y, Ishiwata-Kimata Y, Ito T, Hirata A, Suzuki T, Oikawa D, Takeuchi M, Kohno K (2007) Two regulatory steps of ER-stress sensor Ire1 involving its cluster formation and interaction with unfolded proteins. J Cell Biol 179:75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klämfl TG, Isbary G, Shimizu T, Li YF, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78:5077–5082

    Article  Google Scholar 

  • Koban I, Matthes R, Hübner NO, Welk A, Meisel P, Holtfreter B, Sietmann R, Kindel E, Weltmann K, Kramer A, Kocher T (2010) Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys 12:1–15

    Article  Google Scholar 

  • Kuge S, Jones N (1994) YAP1 dependent activation of TRX2 is essential for the response of Saccharomyces cerevisiae to oxidative stress by hydroperoxides. EMBO J 13:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuge S, Arita M, Murayama A, Maeta K, Izawa S, Inoue Y, Nomoto A (2001) Regulation of the yeast Yap1 nuclear export signal is mediated by redox signal-induced reversible disulfide bond formation. Mol Cell Biol 21:6139–6150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuge S, Jones N, Nomoto A (1997) Regulation of yAP-1 nuclear localization in response to oxidative stress. EMBO J 16:1710–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lackmann JW, Bandow JE (2014) Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol 98:6205–6213

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Paek K, Ju WT, Lee Y (2006) Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J Microbiol 44:269–275

    PubMed  Google Scholar 

  • Lefevre S, Sliwa D, Rustin P, Camadro JM, Santos R (2012) Oxidative stress induces mitochondrial fragmentation in frataxin-deficient cells. Biochem Biophys Res Commun 418:336–341

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nyström T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267

    Article  CAS  PubMed  Google Scholar 

  • MacIsaac KD, Wang T, Gordon DB, Gifford DK, Stormo GD, Fraenkel E (2006) An improved map of conserved regulatory sites for Saccharomyces cerevisiae. BMC Bioinfomatics 7:113. doi:10.1186/1471-2105-7-113

    Article  Google Scholar 

  • Maisch T, Shimizu T, Isbary G, Heinlin J, Karrer S, Klämpfl TG, Lin YF, Morfill G, Zimmermann JL (2012b) Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma. Appl Environ Microbiol 78:4242–4247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisch T, Shimizu T, Li YF, Heinlin J, Karrer S, Morfill G, Zimmermann JL (2012a) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 7:e34610. doi:10.1371/journal.pone.0034610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schüller C, Marchler-Bauer A, Ruis H, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mathuranyanon R, Tsukamoto T, Takeuchi A, Ishiwata-Kimata Y, Tuchiya Y, Kohno K, Kimata Y (2015) Tight regulation of the unfolded protein sensor Ire1 by its intramolecularly antagonizing subdomain. J Cell Sci 128:1762–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyagawa K, Ishiwata-Kimata Y, Kohno K, Kimata Y (2014) Ethanol stress impairs protein folding in the endoplasmic reticulum and activates Ire1 in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 78:1389–1391

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TS, Kohno K, Kimata Y (2013) Zinc depletion activates the endoplasmic reticulum-stress sensor Ire1 via pleiotropic mechanisms. Biosci Biotechnol Biochem 77:1337–1339

    Article  PubMed  Google Scholar 

  • Niemira BA, Boyd G, Sites J (2014) Cold plasma rapid decontamination of food contact surfaces contaminated with Salmonella biofilms. J Food Sci 79:917–922

    Article  Google Scholar 

  • Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536

    Article  CAS  PubMed  Google Scholar 

  • Parsell DA, Kowal AS, Singer MA, Lindquist S (1994) Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478

    Article  CAS  PubMed  Google Scholar 

  • Piper PW, Ortiz-Calderon C, Holyoak C, Coote P, Cole M (1997) Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2:12–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu Y, Kim Y, Lee J, Shim G, Uhm H, Park G, Choi EH (2013) Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One 8:e66231. doi:10.1371/journal.pone.0066231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt AP, McEntee K (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93:5777–5782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw A, Shama G, Iza F (2015) Emerging applications of low temperature gas plasmas in the food industry. Biointerphases 10:029402. doi:10.1116/1.4914029

    Article  PubMed  Google Scholar 

  • Sun S, Anderson NM, Keller S (2014) Atmospheric pressure plasma treatment of black peppercorns inoculated with Salmonella and held under controlled storage. J Food Sci 79:e2441–e2446. doi:10.1111/1750-3841.12696

    Article  CAS  PubMed  Google Scholar 

  • Teixeira D, Shet U, Valencia-Sanchez MA, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Gils CAJ, Hofmann S, Bockema BKHL, Brandenburg R, Bruggeman PJ (2013) Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Physics D: Appl Physics 46:175203–171/14. doi:10.1088/0022-3727/4617/175203

    Article  Google Scholar 

  • Walters RW, Muhlrad D, Garcia J, Parker R (2015) Differential effects of Ydj1 and Sis1 on Hsp70-mediated clearance of stress granules in Saccharomyces cerevisiae. RNA 21:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wemmie JA, Steggerda SM, Moye-Rowley WS (1997) The Saccharomyces cerevisiae AP-1 protein discriminates between oxidative stress elicited by the oxidants H2O2 and diamide. J Biol Chem 272:7908–7914

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Ng BS, Thibault G (2014) Endoplasmic reticulum stress response in yeast and humans. Biosci Rep 34:321–330

    Article  CAS  Google Scholar 

  • Wu S, Zhou F, Zhang Z, Xing D (2012) Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 241:941–954

    Google Scholar 

  • Yamamoto Y, Izawa S (2013) Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes Cells 18:974–984

    Article  CAS  PubMed  Google Scholar 

  • Yaman A (2001) Alternative methods of terminal sterilization for biologically active macromolecules. Curr Opin Drug Discov Devel 4:760–763

    CAS  PubMed  Google Scholar 

  • Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R (2011) Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 23:1186–1196

    Article  Google Scholar 

  • Ziuzina D, Patil S, Cullen PJ, Keener KM, Bourke P (2014) Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce. Food Microbiol 42:109–116

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Drs. Y. Kimata, S. Kuge, and K. Okamoto for the yeast strains and plasmids and A. Yuri and Y. Sanada for the plasma sources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Izawa.

Ethics declarations

Funding

This study was supported by a grant from the Japan Society for the Promotion of Science (No. 26,292,039).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itooka, K., Takahashi, K. & Izawa, S. Fluorescence microscopic analysis of antifungal effects of cold atmospheric pressure plasma in Saccharomyces cerevisiae . Appl Microbiol Biotechnol 100, 9295–9304 (2016). https://doi.org/10.1007/s00253-016-7783-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7783-2

Keywords

Navigation