Skip to main content
Log in

Synthesis of natural variants and synthetic derivatives of the cyclic nonribosomal peptide luminmide in permeabilized E. coli Nissle and product formation kinetics

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

We used a recombinant, permeabilized E. coli Nissle strain harbouring the plu3263 gene cluster from Photorhabdus luminescens for the synthesis of luminmide type cyclic pentapeptides belonging to the class of nonribosomally biosynthesized peptides (NRP). Cells could be fully permeabilized using 1 % v/v toluene. Synthesis of luminmides was increased fivefold when 0.3 mM EDTA was added to the substrate mixture acting as an inhibitor of metal proteases. Luminmide formation was studied applying different amino acid concentrations. Apparent kinetic parameters for the synthesis of the main product luminmide A from leucine, phenylalanine and valine were calculated from the collected data. K s app values ranged from 0.17 mM for leucine to 0.57 mM for phenylalanine, and r max app was about 3 × 10−8 mmol min−1(g CDW)−1). By removing phenylalanine from the substrate mixture, the formation of luminmide A was reduced tenfold while luminmide B was increased from 50 to 500 μg/l becoming the main product. Two new luminmides were synthesized in this study. Luminmide H incorporates tryptophan replacing phenylalanine in luminmide A. In luminmide I, leucine was replaced with 4,5-dehydro-leucine, a non-proteinogenic amino acid fed to the incubation mixture. Our study shows new opportunities for increasing the spectrum of luminmide variants produced, for improving production selectivity and for kinetic in vitro studies of the megasynthetases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bian X, Plaza A, Yan F, Zhang Y, Müller R (2015) Rational and efficient site-directed mutagenesis of adenylation domain alters relative yields of luminmide derivatives in vivo. Biotechnol Bioeng 112(7):1343–1353. doi:10.1002/bit.25560

    Article  CAS  PubMed  Google Scholar 

  • Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler C, Lorenzen W, Brachmann AO, Grun P (2012) Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem Eur J 18(8):2342–2348. doi:10.1002/chem.201103479

    Article  CAS  PubMed  Google Scholar 

  • Calcott MJ, Ackerley DF (2014) Genetic manipulation of non-ribosomal peptide synthetases to generate novel bioactive peptide products. Biotechnol Lett 36(12):2407–2416. doi:10.1007/s10529-014-1642-y

    Article  CAS  PubMed  Google Scholar 

  • Cánovas M, Torroglosa T, Iborra JL (2005) Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzym Microb Technol 37(3):300–308

    Article  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24(5):1073–1109. doi:10.1039/b514050c

    Article  CAS  PubMed  Google Scholar 

  • Eppelmann K, Stachelhaus T, Marahiel MA (2002) Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41(30):9718–9726. doi:10.1021/bi0259406

    Article  CAS  PubMed  Google Scholar 

  • Felix H (1982) Permeabilized cells. Anal Biochem 120(2):211–234

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Bian XY, Hu SB, Wang HL, Huang F, Seibert PM, Plaza A, Xia LQ, Muller R, Stewart AF, Zhang YM (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30(5):440–448. doi:10.1038/nbt.2183

    Article  CAS  PubMed  Google Scholar 

  • Furia TE (1972) Sequestrants in foods. In: Furia TE (ed) CRC handbook of food additives vol I, 2nd edn. CRC Press, pp 271–294

  • Kołodyńska D (2011) Chelating agents of a new generation as an alternative to conventional chelators for heavy metal ions removal from different waste waters. In: Ning RY (ed) Expanding issues in desalination. InTech, pp 339–370

  • Krauser S, Kiefer P, Heinzle E (2012) Multienzyme whole-cell in situ biocatalysis for the production of flaviolin in permeabilized cells of Escherichia coli. ChemCatChem 4(6):786–788. doi:10.1002/cctc.201100351

    Article  CAS  Google Scholar 

  • Krauser S, Weyler C, Blass LK, Heinzle E (2013) Directed multistep biocatalysis using tailored permeabilized cells. In: Zeng AP (ed) Fundamentals and application of new bioproduction systems. Advances in Biochemical Engineering-Biotechnology vol 137. pp 185–234

  • Krauser S, Hoffmann T, Heinzle E (2015) Directed multistep biocatalysis for the synthesis of the polyketide oxytetracycline in Perrneabilized cells of Escherichia coli. ACS Catal 5(3):1407–1413. doi:10.1021/cs501825u

    Article  CAS  Google Scholar 

  • Niklas J, Melnyk A, Yuan YB, Heinzle E (2011) Selective permeabilization for the high-throughput measurement of compartmented enzyme activities in mammalian cells. Anal Biochem 416(2):218–227. doi:10.1016/j.ab.2011.05.039

    Article  CAS  PubMed  Google Scholar 

  • O’Connor SE (2015) Engineering of secondary metabolism. Annu Rev Genet 49:71–94. doi:10.1146/annurev-genet-120213-092053

    Article  PubMed  Google Scholar 

  • Schwarzer D, Mootz HD, Linne U, Marahiel MA (2002) Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases. PNAS 99(22):14083–14088. doi:10.1073/pnas.212382199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thedei G, Leitao DPS, Bolean M, Paulino TP, Spadaro ACC, Ciancaglini P (2008) Toluene permeabilization differentially affects F- and P-type ATPase activities present in the plasma membrane of Streptococcus mutans. Braz J Med Biol Res 41(12):1047–1053

    Article  CAS  PubMed  Google Scholar 

  • Walsh CT (2008) The chemical versatility of natural-product assembly lines. Acc Chem Res 41(1):4–10. doi:10.1021/ar7000414

    Article  CAS  PubMed  Google Scholar 

  • Weyler C, Heinzle E (2015) Multistep synthesis of UDP-glucose using tailored, permeabilized cells of E. coli. Appl Biochem Biotechnol 175(8):3729–3736. doi:10.1007/s12010-015-1540-3

    Article  CAS  PubMed  Google Scholar 

  • WHO (2014) Global Tuberculosis Report:2014

  • Wilson DJ, Shi C, Teitelbaum AM, Gulick AM, Aldrich CC (2013) Characterization of AusA: a dimodular nonribosomal peptide synthetase responsible for the production of Aureusimine Pyrazinones. Biochemistry 52(5):926–937. doi:10.1021/bi301330q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Kohli RM, Bruner SD, Walsh CT (2004) Type II Thioesterase restores activity of a NRPS module stalled with an aminoacyl-S-enzyme that cannot be elongated. Chembiochem 5(9):1290–1293. doi:10.1002/cbic.200400077

    Article  CAS  PubMed  Google Scholar 

  • Yuan Y, Heinzle E (2009) Permeabilization of Corynebacterium glutamicum for NAD(P)H-dependent intracellular enzyme activity measurement. C R Chim 12(10–11):1154–1162

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank Dr. Xiaoyng Bian, Daniel Sauer and Prof. Rolf Müller from Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) for supplying the strain E. coli Nissle 1917 plu3263 and the purified luminmide A and B standards used in this study as well as for analytical support. We thank Prof. Rolf Müller for reading and commenting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmar Heinzle.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors.

Funding

This study was funded by the BMBF (Federal Ministry of Education and Research) Project MECAT, FKZ 031P7238 within the initiative, Biotechnologie 2020+: Basistechnologien für eine nächste Generation biotechnologischer Verfahren”.

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weyler, C., Heinzle, E. Synthesis of natural variants and synthetic derivatives of the cyclic nonribosomal peptide luminmide in permeabilized E. coli Nissle and product formation kinetics. Appl Microbiol Biotechnol 101, 131–138 (2017). https://doi.org/10.1007/s00253-016-7770-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7770-7

Keywords

Navigation