Skip to main content
Log in

Biological synthesis of nanosized sulfide semiconductors: current status and future prospects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There have been extensive and comprehensive reviews in the field of metal sulfide precipitation in the context of environmental remediation. However, these works have focused mainly on the removal of metals from aqueous solutions—usually, metal-contaminated effluents—with less emphasis on the precipitation process and on the end-products, frequently centering on metal removal efficiencies. Recently, there has been an increasing interest not only in the possible beneficial effects of these bioremediation strategies for metal-rich effluents but also on the formed precipitates. These metal sulfide materials are of special relevance in industry, due to their optical, electronic, and mechanical properties. Hence, identifying new routes for synthesizing these materials, as well as developing methodologies allowing for the control of the shape and size of particulates, is of environmental, economic, and practical importance. Multiple studies have shown proof-of-concept for the biological synthesis of inorganic metallic sulfide nanoparticles (NPs), resorting to varied organisms or cell components, though this information has scarcely been structured and compiled in a systematic manner. In this review, we overview the biological synthesis methodologies of nanosized metal sulfides and the advantages of these strategies when compared to more conventional chemical routes. Furthermore, we highlight the possibility of the use of numerous organisms for the synthesis of different metal sulfide NPs, with emphasis on sulfate-reducing bacteria (SRB). Finally, we put in perspective the potential of these methodologies in the emerging research areas of biohydrometallurgy and nanobiotechnology for the uptake of metals in the form of metal sulfide nanoparticles. A more complete understanding of the principles underlying the (bio)chemistry of formation of solids in these conditions may lead to the large-scale production of such metal sulfides, while simultaneously allowing an enhanced control over the size and shape of these biogenic nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • 1272/2008/EC (2008) Classificação, rotulagem e embalagem de substâncias e misturas. In: Union E (ed). Jornal Oficial n° L 353 edn, p 1354

  • 71/1995/A (1995) Offensive Odor Control Law. In: Environment Mot (ed).

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109. doi:10.1021/ja027296o

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53

    Article  CAS  Google Scholar 

  • Akman O, Kavas H, Baykal A, Toprak MS, Çoruh A, Aktaş B (2013) Magnetic metal nanoparticles coated polyacrylonitrile textiles as microwave absorber. J Magn Magn Mater 327:151–158

    Article  CAS  Google Scholar 

  • Alvarez MT, Crespo C, Mattiasson B (2007) Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids. Chemosphere 66(9):1677–1683, doi:10.1016/j.chemosphere.2006.07.065

    Article  CAS  PubMed  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I Consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sust Energ Rev 16(5):3286–3301, doi:10.1016/j.rser.2012.02.050

    Article  CAS  Google Scholar 

  • Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6(4):377–382. doi:10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  • Awwad A (2013) Biosynthesis of metal sulfide nanoparticles using plant leaf extract, vol 1. Lambert Academic Publishing, UK

    Google Scholar 

  • Azabou S, Mechichi T, Sayadi S (2007) Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Miner Eng 20(2):173–178, doi:10.1016/j.mineng.2006.08.008

    Article  CAS  Google Scholar 

  • Bai H, Zhang Z, Guo Y, Jia W (2009a) Biological synthesis of size-controlled cadmium sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Nanoscale Res Lett 4(7):717–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai HJ, Zhang ZM, Guo Y, Yang GE (2009b) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70(1):142–146, doi:10.1016/j.colsurfb.2008.12.025

    Article  CAS  PubMed  Google Scholar 

  • Bai H, Kang Y, Quan H, Han Y, Sun J, Feng Y (2013) Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technol 128:818–822

    Article  CAS  Google Scholar 

  • Balis N, Dracopoulos V, Bourikas K, Lianos P (2013) Quantum dot sensitized solar cells based on an optimized combination of ZnS, CdS and CdSe with CoS and CuS counter electrodes. Electrochim Acta 91(0):246–252, doi:10.1016/j.electacta.2013.01.004

    Article  CAS  Google Scholar 

  • Banfalvi G (2006) Removal of insoluble heavy metal sulfides from water. Chemosphere 63(7):1231–1234, doi:10.1016/j.chemosphere.2005.08.066

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Reynolds LX, MacLachlan A, Lutz T, Ashraf RS, Zhang W, Nielsen CB, McCulloch I, Rebois DG, Kirchartz T, Hill MS, Molloy KC, Nelson J, Haque SA (2013) Influence of crystallinity and energetics on charge separation in polymer-inorganic nanocomposite films for solar cells. Sci Rep 3:1531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barnes LJ, Janssen FJ, Scheeren PJH, Versteegh JH, Koch RO (1992) Simultaneous microbial removal of sulfate and heavy-metals from waste-water. T I Min Metall C 101:C183–C189

    CAS  Google Scholar 

  • Benetti LR, Campos D, Gurgueira SA, Vercesi AE, Guedes CEV, Santos KL, Wallace JL, Teixeira SA, Florenzano J, Costa SKP, Muscará MN, Ferreira HHA (2013) Hydrogen sulfide inhibits oxidative stress in lungs from allergic mice in vivo. Eur J Pharmacol 698(1–3):463–469. doi:10.1016/j.ejphar.2012.11.025

  • Bergey DH, Breed RS (1957) Bergey’s manual of determinative bacteriology. Williams & Wilkins, Baltimore

    Google Scholar 

  • Bessergenev V, Ivanova EN, Kovalevskaya YA, Gromilov SA, Kirichenko VN, Zemskova SM, Vasilieva IG, Ayupov BM, Shwarz NL (1995) Optical and structural properties of Zns and Zns-Mn films prepared by CVD method. Mater Res Bull 30(11):1393–1400

    Article  CAS  Google Scholar 

  • Bhagat M, Burgess JE, Antunes APM, Whiteley CG, Duncan JR (2004) Precipitation of mixed metal residues from wastewater utilising biogenic sulphide. Miner Eng 17(7-8):925–932. doi:10.1016/j.mineng.2004.02.006

    Article  CAS  Google Scholar 

  • Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BLV, Shouche YS, Ogale S, Sastry M (2008) Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. Langmuir 24(11):5787–5794. doi:10.1021/la704019p

    Article  CAS  PubMed  Google Scholar 

  • Boonstra J, van Lier R, Janssen G, Dijkman H, Buisman CJN (1999) Biological treatment of acid mine drainage. In: Amils R, Ballester A (eds) Process Metallurgy. vol Volume 9. Elsevier, pp 559-567

  • Boros M, Kemény Á, Sebők B, Bagoly T, Perkecz A, Petőházi Z, Maász G, Schmidt J, Márk L, László T, Helyes Z, Szolcsányi J, Pintér E (2013) Sulphurous medicinal waters increase somatostatin release: it is a possible mechanism of anti-inflammatory effect of balneotherapy in psoriasis. European Journal of Integrative Medicine 5(2):109–118, doi:10.1016/j.eujim.2012.09.005

    Article  Google Scholar 

  • Bube RH (2001) Cadmium sulfide and telluride. In: Buschow KHJB, Robert WC, Merton CF, Bernard I, Edward JK, Subhash M, Patrick V (eds) Encyclopedia of materials: science and technology (second edition). Elsevier, Oxford, pp 873–879

    Chapter  Google Scholar 

  • Canary JW, Mortezaei S, Liang J (2010) Transition metal-based chiroptical switches for nanoscale electronics and sensors. Coordin Chem Rev 254(19–20):2249–2266

    Article  CAS  Google Scholar 

  • Canfield DE, Rosing MT, Bjerrum C (2006) Early anaerobic metabolisms. Philos T R Soc B 361(1474):1819–1834. doi:10.1098/rstb.2006.1906

    Article  CAS  Google Scholar 

  • Castillo J, Pérez-López R, Caraballo MA, Nieto JM, Martins M, Costa MC, Olías M, Cerón JC, Tucoulou R (2012) Biologically-induced precipitation of sphalerite–wurtzite nanoparticles by sulfate-reducing bacteria: implications for acid mine drainage treatment. Sci Total Environ 423(0):176–184, doi:10.1016/j.scitotenv.2012.02.013

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira VS, Hollenbach EB, Maboni F, Vainstein MH, Camargo FAO, Peralba MCR, Bento FM (2011) Biodegradation potential of oily sludge by pure and mixed bacterial cultures. Bioresource Technol 102(23):11003–11010, doi:10.1016/j.biortech.2011.09.074

    Article  CAS  Google Scholar 

  • 40.CFR-§52 (2011) Hydrogen Sulfide; Community Right to-Know Toxic Chemical Release Reporting. In: Agency EP (ed) RIN 2025–AA27

  • Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun 47(14):4252–4254

    Article  CAS  Google Scholar 

  • Chen JF, Li YL, Wang YH, Yun J, Cao DP (2004) Preparation and characterization of zinc sulfide nanoparticles under high-gravity environment. Mater Res Bull 39(2):185–194. doi:10.1016/j.materresbull.2003.10.017

    Article  CAS  Google Scholar 

  • Chen YL, Tuan HY, Tien CW, Lo WH, Liang HC, Hu YC (2009) Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnol Prog 25(5):1260–6. doi:10.1002/btpr.199

    Article  CAS  PubMed  Google Scholar 

  • Chen G-Q, Zou Z-J, Zeng G-M, Yan M, Fan J-Q, Chen A-W, Yang F, Zhang W-J, Wang L (2011) Coarsening of extracellularly biosynthesized cadmium crystal particles induced by thioacetamide in solution. Chemosphere 83(9):1201–1207, doi:10.1016/j.chemosphere.2011.03.063

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Gu J-D (2003) Reduction of chromate (CrO4 2−) by an enrichment consortium and an isolate of marine sulfate-reducing bacteria. Chemosphere 52(9):1523–1529, doi:10.1016/S0045-6535(03)00491-0

    Article  CAS  PubMed  Google Scholar 

  • Cheung KH, Gu J-D (2007) Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review. Int Biodeter Biodegr 59(1):8–15, doi:10.1016/j.ibiod.2006.05.002

    Article  CAS  Google Scholar 

  • Choudhary RP, Sheoran AS (2012) Performance of single substrate in sulphate reducing bioreactor for the treatment of acid mine drainage. Miner Eng 39(0):29–35, doi:10.1016/j.mineng.2012.07.005

    Article  CAS  Google Scholar 

  • Choudhary S, Islam E, Kazy SK, Sar P (2012) Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. J Environ Sci Health A 47(4):622–637. doi:10.1080/10934529.2012.650584

    Article  CAS  Google Scholar 

  • Costa MC, Duarte JC (2005) Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water Air Soil Poll 165(1-4):325–345. doi:10.1007/s11270-005-6914-7

    Article  CAS  Google Scholar 

  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M (2009) Wine wastes as carbon source for biological treatment of acid mine drainage. Chemosphere 75(6):831–836, doi:10.1016/j.chemosphere.2008.12.062

    Article  CAS  PubMed  Google Scholar 

  • Cui G, Wang J, Fan H, Sun X, Jiang Y, Wang S, Liu D, Gui J (2011) Towards understanding the microstructures and hydrocracking performance of sulfided Ni–W catalysts: effect of metal loading. Fuel Process Technol 92(12):2320–2327, doi:10.1016/j.fuproc.2011.07.020

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microb 59(1):7–14

    CAS  Google Scholar 

  • da Costa J (2013) Bio-synthesis of nanosized semiconductors using mine wastes as material sources. Doctorate, University of the Algarve

  • da Costa JP, Girao AV, Lourenco JP, Monteiro OC, Trindade T, Costa MC (2012) Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy 117:57–63. doi:10.1016/j.hydromet.2012.02.005

    Article  CAS  Google Scholar 

  • da Costa JP, Girão AV, Lourenço JP, Monteiro OC, Trindade T, Costa MC (2013) Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems. J Environ Manage 128(0):226–232, doi:10.1016/j.jenvman.2013.05.034

    Article  PubMed  CAS  Google Scholar 

  • da Costa J, Girão AV, Monteiro O, Trindade T, Costa M (2015) Biotechnologically obtained nanocomposites: a practical application for photodegradation of Safranin-T under UV-Vis and solar light. J Environ Sci Health A 50(10):996–1008. doi:10.1080/10934529.2015.1038155

    Article  CAS  Google Scholar 

  • da Rosa A (2013) Chapter 9—fuel cells fundamentals of renewable energy processes (third edition). Academic, Boston, pp 279–369

    Book  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597

    Article  CAS  Google Scholar 

  • Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18, doi:10.1016/j.colsurfb.2010.03.029

    Article  CAS  PubMed  Google Scholar 

  • De Klerk RJ, Jia Y, Daenzer R, Gomez MA, Demopoulos GP (2012) Continuous circuit coprecipitation of arsenic(V) with ferric iron by lime neutralization: process parameter effects on arsenic removal and precipitate quality. Hydrometallurgy 111–112(0):65–72, doi:10.1016/j.hydromet.2011.10.004

    Article  CAS  Google Scholar 

  • Demergasso CS, Guillermo CD, Lorena EG, Mur JJP, Pedrós-Alió C (2007) Microbial precipitation of arsenic sulfides in Andean salt flats. Geomicrobiol J 24(2):111–123

    Article  CAS  Google Scholar 

  • dos Santos ACB, Grange P, Jr Faro AC (1999) Effect of support sulphidation on the hydrocracking activity of niobia-supported nickel and molybdenum catalysts. Appl Catal A Gen 178(1):29–38, doi:10.1016/S0926-860X(98)00268-3

    Article  Google Scholar 

  • Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M (2002) Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14(6):415–418. doi:10.1002/1521-4095(20020318)14:6<415::aid-adma415>3.0.co;2-w

    Article  CAS  Google Scholar 

  • Edel-Hermann V, Gautheron N, Steinberg C (2012) Genetic diversity of Fusarium oxysporum and related species pathogenic on tomato in Algeria and other Mediterranean countries. Plant Pathol 61(4):787–800. doi:10.1111/j.1365-3059.2011.02551.x

    Article  CAS  Google Scholar 

  • Elliott P, Ragusa S, Catcheside D (1998) Growth of sulfate-reducing bacteria under acidic conditions in an upflow anaerobic bioreactor as a treatment system for acid mine drainage. Water Res 32(12):3724–3730

    Article  CAS  Google Scholar 

  • Fang D, Zhang R, Liu X, Zhou L (2012) Selective recovery of soil-borne metal contaminants through integrated solubilization by biogenic sulfuric acid and precipitation by biogenic sulfide. J Hazard Mater 219–220(0):119–126, doi:10.1016/j.jhazmat.2012.03.062

  • Flynn CE, Mao C, Hayhurst A, Williams JL, Georgiou G, Iverson B, Belcher AM (2003) Synthesis and organization of nanoscale II-VI semiconductor materials using evolved peptide specificity and viral capsid assembly. J Mater Chem 13(10):2414–2421

    Article  CAS  Google Scholar 

  • Foucher S, Battaglia-Brunet F, Ignatiadis I, Morin D (2001) Treatment by sulfate-reducing bacteria of Chessy acid-mine drainage and metals recovery. Chem Eng Sci 56(4):1639–1645, doi:10.1016/S0009-2509(00)00392-4

  • Franco A, Neves MC, Carrott MMLR, Mendonca MH, Pereira MI, Monteiro OC (2009) Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. J Hazard Mater 161(1):545–550. doi:10.1016/j.jhazmat.2008.03.133

    Article  CAS  PubMed  Google Scholar 

  • Friend RF, Phillips MF, Rao AF, Wilson M, Li ZF, McNeill CR (2012) Excitons and charges at organic semiconductor heterojunctions. Faraday Discuss 155(1359-6640 (Print))

  • Gadd GM (2000) Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11(3):271–279, doi:10.1016/S0958-1669(00)00095-1

  • Garcia C, Moreno DA, Ballester A, Blazquez ML, Gonzalez F (2001) Bioremediation of an industrial acid mine water by metal-tolerant sulphate-reducing bacteria. Miner Eng 14(9):997–1008

    Article  CAS  Google Scholar 

  • Gaware U, Kamble V, Ankamwar B (2012) Ecofriendly synthesis of anisotropic gold nanoparticles: a potential candidate of SERS studies. International Journal of Electrochemistry 2012:6. doi:10.1155/2012/276246

    Article  CAS  Google Scholar 

  • Ge X, Ni Y, Zhang Z (2002) A novel route to prepare cadmium sulfide nano-rods. Radiat Phys Chem 64(3):223–227, doi:10.1016/S0969-806X(01)00494-7

  • Geoffroy N, Demopoulos GP (2011) The elimination of selenium(IV) from aqueous solution by precipitation with sodium sulfide. J Hazard Mater 185(1):148–154, doi:10.1016/j.jhazmat.2010.09.009

  • Gharabaghi M, Irannajad M, Azadmehr AR (2012) Selective sulphide precipitation of heavy metals from acidic polymetallic aqueous solution by thioacetamide. Ind Eng Chem Res 51(2):959–968. doi:10.1021/Ie201832x

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803, doi:10.1016/j.biotechadv.2011.06.007

  • Gonçalves MMM, da Costa ACA, Leite SGF, Sant’Anna GL Jr (2007) Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere 69(11):1815–1820, doi:10.1016/j.chemosphere.2007.05.074

  • Grein F, Ramos AR, Venceslau SS, Pereira IAC (2012) Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA)—Bioenergetics(0)

  • Hard BC, Friedrich S, Babel W (1997) Bioremediation of acid mine water using facultatively methylotrophic metal-tolerant sulfate-reducing bacteria. Microbiol Res 152(1):65–73, doi:10.1016/S0944-5013(97)80025-0

  • Heiba ZK, Mohamed MB, Imam NG (2015) Structural tuning of CdS nanoparticles with nucleation temperature and its reflection on the optical properties. J Mol Struct 1094:91–97, doi:10.1016/j.molstruc.2015.04.003

  • Hensen EJM, van Veen JAR (2003) Encapsulation of transition metal sulfides in faujasite zeolite for hydroprocessing applications. Catal Today 86(1–4):87–109, doi:10.1016/S0920-5861(03)00406-1

  • Herrera P, Uchiyama H, Igarashi T, Asakura K, Ochi Y, Ishizuka F, Kawada S (2007) Acid mine drainage treatment through a two-step neutralization ferrite-formation process in northern Japan: physical and chemical characterization of the sludge. Miner Eng 20(14):1309–1314

    Article  CAS  Google Scholar 

  • Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11(2):83–94. doi:10.1038/nrmicro2939

    Article  CAS  PubMed  Google Scholar 

  • Hohmann-Marriott MF, Blankenship RE (2011) Evolution of photosynthesis. Annu Rev Plant Biol 62:515–548. doi:10.1146/annurev-arplant-042110-103811

    Article  CAS  PubMed  Google Scholar 

  • Holmes JD, Smith PR, Evansgowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray-analysis of the extracellular cadmium-sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163(2):143–147. doi:10.1007/Bf00381789

    Article  CAS  PubMed  Google Scholar 

  • Holmes JD, Richardson DJ, Saed S, Evans-Gowing R, Russell DA, Sodeau JR (1997) Cadmium-specific formation of metal sulfide ‘Q-particles’ by Klebsiella pneumoniae. Microbiology 143(8):2521–2530. doi:10.1099/00221287-143-8-2521

    Article  CAS  PubMed  Google Scholar 

  • Hosseini MR, Sarvi MS (2015) Recent achievements in the microbial synthesis of semiconductor metal sulfide nanoparticles. Mater Sci Semicond Process 40:293–301, doi:10.1016/j.mssp.2015.06.003

  • Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83(1–4):106–113, doi:10.1016/j.hydromet.2006.03.017

  • Ike M, Yamashita M, Soda S (2011) Handbook of Metal Biotechnology: Applications for Environmental Conservation and Sustainability. Pan Stanford Publishing

  • Isac LA, Duta A, Kriza A, Enesca IA, Nanu M (2007) The growth of CuS thin films by Spray Pyrolysis. Proceedings of the International Conference on Nanoscience and Technology 61:477–481. doi:10.1088/1742-6596/61/1/096

    CAS  Google Scholar 

  • Iwahori K, Takagi R, Kishimoto N, Yamashita I (2011) A size controlled synthesis of CuS nano-particles in the protein cage, apoferritin. Mater Lett 65(21–22):3245–3247, doi:10.1016/j.matlet.2011.07.003

  • Jaiganesh T, Daisy Vimala Rani J, Girigoswami A (2012) Spectroscopically characterized cadmium sulfide quantum dots lengthening the lag phase of Escherichia coli growth. Spectrochim Acta A Mol Biomol Spectrosc 92(0):29–32, doi:10.1016/j.saa.2012.02.044

  • Jang JS, Li W, Oh SH, Lee JS (2006) Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light. Chem Phys Lett 425(4–6):278–282, doi:10.1016/j.cplett.2006.05.031

  • Janyasuthiwong S, Rene ER, Esposito G, Lens PNL (2015) Effect of pH on Cu, Ni and Zn removal by biogenic sulfide precipitation in an inversed fluidized bed bioreactor. Hydrometallurgy 158:94–100, doi:10.1016/j.hydromet.2015.10.009

  • Jha MC, Meyer GA, Wicker GR, Meeting A (1981) An improved process for precipitating nickel sulfide from acidic laterite leach liquors. Golden Amax Extractive Research & Development, [S.l.]

  • Jiang D, Hu W, Wang H, Shen B, Deng Y (2011) Microemulsion template synthesis of copper sulfide hollow spheres at room temperature. Colloids Surf A Physicochem Eng Asp 384(1–3):228–232, doi:10.1016/j.colsurfa.2011.03.053

  • Jin Z, Xue S, Luo Y, Tian B, Fang H, Li H, Pei Y (2013) Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiol Biochem 62(0):41–46, doi:10.1016/j.plaphy.2012.10.017

  • Johnson DB (2003) Chemical and microbiological characteristics of mineral spoils and drainage waters at abandoned coal and metal mines. Water, Air, & Soil Pollution: Focus 3(1):47–66. doi:10.1023/a:1022107520836

    Article  CAS  Google Scholar 

  • Johnson DB (2012) Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy 127–128:172–177

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1-2):3–14. doi:10.1016/j.scitotenv.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  • Jong T, Parry DL (2003) Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res 37(14):3379–3389, doi:10.1016/S0043-1354(03)00165-9

  • Kaksonen AH, Riekkola-Vanhanen ML, Puhakka JA (2003) Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Res 37(2):255–266

    Article  CAS  PubMed  Google Scholar 

  • Kalele S, Gosavi SW, Urban J, Kulkarni SK (2006) Nanoshell particles: synthesis, properties and applications. Curr Sci India 91(8):1038–1052

    CAS  Google Scholar 

  • Kang Y, Feng Y (2003) Up-flow Anaerobic Multiple Bed Reactor with Adjustive Three-phases Separator. China Patent

  • Kang SH, Bozhilov KN, Myung NV, Mulchandani A, Chen W (2008) Microbial synthesis of CdS nanocrystals in genetically engineered E. coli. Angew Chem 120(28):5264–5267. doi:10.1002/ange.200705806

    Article  Google Scholar 

  • Karantonis H, Gribilas G, Stamoulis I, Giaginis C, Spiliopoulou C, Kouraklis G, Demopoulos C, Theocharis S (2010) Platelet-activating factor involvement in thioacetamide-induced experimental liver fibrosis and cirrhosis. Digest Dis Sci 55(2):276–284. doi:10.1007/s10620-009-0745-0

    Article  CAS  PubMed  Google Scholar 

  • Karbanee N, van Hille RP, Lewis AE (2008) Controlled nickel sulfide precipitation using gaseous hydrogen sulfide. Ind Eng Chem Res 47(5):1596–1602. doi:10.1021/ie0711224

    Article  CAS  Google Scholar 

  • Kitching M, Ramani M, Marsili E (2015) Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microb Biotechnol 8(6):904–917. doi:10.1111/1751-7915.12151

    Article  CAS  PubMed  Google Scholar 

  • Kolb MA, Maier WF, Stowe K (2011) High-throughput syntheses of nano-scaled mixed metal sulphides. Catal Today 159(1):64–73. doi:10.1016/j.cattod.2010.07.010

    Article  CAS  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar K (2002a) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78(5):583–588

    Article  CAS  PubMed  Google Scholar 

  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002b) Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14(11):815–818. doi:10.1002/1521-4095(20020605)14:11<815::aid-adma815>3.0.co;2-k

    Article  CAS  Google Scholar 

  • Kroukamp H, den Haan R, van Wyk N, van Zyl WH (2013) Overexpression of native PSE1 and SOD1 in Saccharomyces cerevisiae improved heterologous cellulase secretion. Appl Energy 102(0):150–156, doi:10.1016/j.apenergy.2012.05.062

  • Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2012) Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. Journal of Hazardous Materials(0)

  • Labastida I, Armienta MA, Lara-Castro RH, Aguayo A, Cruz O, Ceniceros N (2013) Treatment of mining acidic leachates with indigenous limestone, Zimapan Mexico. Journal of Hazardous Materials(0) doi:10.1016/j.jhazmat.2012.07.006

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, Stasio GD, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747. doi:10.1126/science.290.5497.1744

    Article  CAS  PubMed  Google Scholar 

  • Lee S-W, Mao C, Flynn CE, Belcher AM (2002) Ordering of quantum dots using genetically engineered viruses. Science 296(5569):892–895. doi:10.1126/science.1068054

    Article  CAS  PubMed  Google Scholar 

  • Lee M, Paik IS, Kim I, Kang H, Lee S (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J Hazard Mater 144(1–2):208–214

    Article  CAS  PubMed  Google Scholar 

  • Lenga RE, Votoupal KL, Corporation S-A (1993) The Sigma-Aldrich library of regulatory and safety data. Aldrich Chemical Company

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Phys 51:141–165. doi:10.1146/annurev.arplant.51.1.141

    Article  CAS  Google Scholar 

  • Lewis AE (2010) Review of metal sulphide precipitation. Hydrometallurgy 104(2):222–234. doi:10.1016/j.hydromet.2010.06.010

    Article  CAS  Google Scholar 

  • Liu J, Ikushima Y, Shervani Z (2003) Environmentally benign preparation of metal nano-particles by using water-in-CO2 microemulsions technology. Curr Opinion Solid State Mater Sci 7(3):255–261

    Article  CAS  Google Scholar 

  • Liu J, Valsaraj KT, Devai I, DeLaune RD (2008) Immobilization of aqueous Hg(II) by mackinawite (FeS). J Hazard Mater 157(2–3):432–440, doi:10.1016/j.jhazmat.2008.01.006

  • Liu Q, Zhao Y, Zhao G (2011) Production of zinc and lead concentrates from lean oxidized zinc ores by alkaline leaching followed by two-step precipitation using sulfides. Hydrometallurgy 110(1–4):79–84, doi:10.1016/j.hydromet.2011.08.009

  • Luo M, Liu Y, Hu J, Li J, Liu J, Richards RM (2012) General strategy for one-pot synthesis of metal sulfide hollow spheres with enhanced photocatalytic activity. Appl Catal B Environ 125(0):180–188, doi:10.1016/j.apcatb.2012.05.041

  • Mackie AL, Walsh ME (2012) Bench-scale study of active mine water treatment using cement kiln dust (CKD) as a neutralization agent. Water Res 46(2):327–334

    Article  CAS  PubMed  Google Scholar 

  • Madzivire G, Gitari WM, Vadapalli VRK, Ojumu TV, Petrik LF (2011) Fate of sulphate removed during the treatment of circumneutral mine water and acid mine drainage with coal fly ash: modelling and experimental approach. Miner Eng 24(13):1467–1477

    Article  CAS  Google Scholar 

  • Maier E, Fischereder A, Haas W, Mauthner G, Albering J, Rath T, Hofer F, List EJW, Trimmel G (2011) Metal sulfide–polymer nanocomposite thin films prepared by a direct formation route for photovoltaic applications. Thin Solid Films 519(13):4201–4206

    Article  CAS  Google Scholar 

  • Mann S, Sparks NHC, Frankel RB, Bazylinski DA, Jannasch HW (1990) Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343(6255):258–261

    Article  CAS  Google Scholar 

  • Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100(12):6946–6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins MSF, Santos ES, Barros RJJ, Costa MCSD (2008) Treatment of Acid Mine Drainage with Sulphate-reducing Bacteria Using a Two-stage Bioremediation Process. Mine Water and the Environment, Proceedings:297-300

  • Mata YN, Torres E, Blazquez M, Ballester A, Gonzalez F, Munoz JA (2007) Lead and gold removal using sugar-beet pectin gels with and without immobilized Fucus vesiculosus. Adv Mat Res 20–21:599–602

    Article  Google Scholar 

  • Mcanally S, Benefield L, Reed RB (1984) Nickel removal from a synthetic nickel-plating wastewater using sulfide and carbonate for precipitation and coprecipitation. Separ Sci Technol 19(2-3):191–217. doi:10.1080/01496398408060655

    Article  CAS  Google Scholar 

  • McCauley CA, O’Sullivan AD, Milke MW, Weber PA, Trumm DA (2009) Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Res 43(4):961–970, doi:10.1016/j.watres.2008.11.029

  • Mi C, Wang Y, Zhang J, Huang H, Xu L, Wang S, Fang X, Fang J, Mao C, Xu S (2011) Biosynthesis and characterization of CdS quantum dots in genetically engineered Escherichia coli. J Biotechnol 153(3–4):125–132, doi:10.1016/j.jbiotec.2011.03.014

  • Mishra A, Malik A (2012) Simultaneous bioaccumulation of multiple metals from electroplating effluent using Aspergillus lentulus. Water Res 46(16):4991–4998, doi:10.1016/j.watres.2012.06.035

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356, doi:10.1016/j.biotechadv.2013.01.003

  • Mokone TP, Hille RP, Lewis A mechanisms responsible for particle formation during metal sulphide precipitation processes. In: IMWA (ed) Water Institute of Southern Africa & International Mine Water Association: Proceedings, International Mine Water Conference, Pretoria, 2009.

  • Mokone TP, van Hille RP, Lewis AE (2012) Metal sulphides from wastewater: assessing the impact of supersaturation control strategies. Water Res 46(7):2088–2100, doi:10.1016/j.watres.2012.01.027

  • Monteiro O, Trindade T (2000) Preparation of Bi2S3 nanofibers using a single-source method. J Mater Sci Lett 19(10):859–861

    Article  CAS  Google Scholar 

  • Moreau JW, Webb RI, Banfield JF (2004) Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. Am Mineral 89(7):950–960

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519. doi:10.1021/nl0155274

    Article  CAS  Google Scholar 

  • Murugadoss G (2013) Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants. Particuology 11(5):566–573, doi:10.1016/j.partic.2012.11.003

  • Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6(6):441–454. doi:10.1038/Nrmicro1892

    CAS  PubMed  Google Scholar 

  • Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155. doi:10.1016/j.tibtech.2015.11.003

    Article  CAS  PubMed  Google Scholar 

  • Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1):1–13

    Article  CAS  Google Scholar 

  • Natarajan KA (2008) Microbial aspects of acid mine drainage and its bioremediation. T Nonferr Metal Soc 18(6):1352–1360

    Article  CAS  Google Scholar 

  • O’Donnell K, Sutton DA, Rinaldi MG, Magnon KC, Cox PA, Revankar SG, Sanche S, Geiser DM, Juba JH, van Burik JAH, Padhye A, Anaissie EJ, Francesconi A, Walsh TJ, Robinson JS (2004) Genetic diversity of human pathogenic members of the Fusarium oxysporum complex inferred from multilocus DNA sequence data and amplified fragment length polymorphism analyses: evidence for the recent dispersion of a geographically widespread clonal lineage and nosocomial origin. J Clin Microbiol 42(11):5109–5120. doi:10.1128/Jcm.42.11.5109-5120.2004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pagnanelli F, Cruz Viggi C, Cibati A, Uccelletti D, Toro L, Palleschi C (2012) Biotreatment of Cr(VI) contaminated waters by sulphate reducing bacteria fed with ethanol. J Hazard Mater 199–200(0):186–192, doi:10.1016/j.jhazmat.2011.10.082

  • Pan Y, Zhang F, Wu K, Lu Z, Chen Y, Zhou Y, Tang Y, Lu T (2012) Carbon supported Palladium–Iron nanoparticles with uniform alloy structure as methanol-tolerant electrocatalyst for oxygen reduction reaction. Int J Hydrogen Energ 37(4):2993–3000, doi:10.1016/j.ijhydene.2011.11.042

  • Patel JD, Mighri F, Ajji A (2012) Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals. Mater Res Bull 47(8):2016–2021

    Article  CAS  Google Scholar 

  • Pattabi M, Uchil J (2000) Synthesis of cadmium sulphide nanoparticles. Sol Energ Mat Sol C 63(4):309–314, doi:10.1016/S0927-0248(00)00050-7

  • Paul J-F, Cristol S, Payen E (2008) Computational studies of (mixed) sulfide hydrotreating catalysts. Catal Today 130(1):139–148, doi:10.1016/j.cattod.2007.07.020

  • Pawaskar NR, Sathaye SD, Bhadbhade MM, Patil KR (2002) Applicability of liquid-liquid interface reaction technique for the preparation of zinc sulfide nano particulate thin films. Mater Res Bull 37(9):1539–1546

    Article  CAS  Google Scholar 

  • Poirier I, Hammann P, Kuhn L, Bertrand M (2013) Strategies developed by the marine bacterium Pseudomonas fluorescens BA3SM1 to resist metals: a proteome analysis. Aquat Toxicol 128–129(0):215–232, doi:10.1016/j.aquatox.2012.12.006

  • Radhika V, Subramanian S, Natarajan KA (2006) Bioremediation of zinc using Desulfotomaculum nigrificans: bioprecipitation and characterization studies. Water Res 40(19):3628–3636, doi:10.1016/j.watres.2006.06.013

  • Rafea M, Farag AAM, Gad S, Roushdy N (2013) Heterojunction performance of dip coated n-Cd0.5Zn0.5S thin films on different metal sulfide substrates. Materials Science in Semiconductor Processing 16(1)

  • Rajapaksha RMCP (2011) Heavy metal tolerance of culturable bacteria and fungi in a long-term cultivated tropical ultisol. Eur J Soil Biol 47(1):9–15, doi:10.1016/j.ejsobi.2010.10.006

  • Reese RN, Winge DR (1988) Sulfide stabilization of the cadmium-gamma-glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263(26):12832–5

    CAS  PubMed  Google Scholar 

  • Remoundaki E, Kousi P, Joulian C, Battaglia-Brunet F, Hatzikioseyian A, Tsezos M (2008) Characterization, morphology and composition of biofilm and precipitates from a sulphate-reducing fixed-bed reactor. J Hazard Mater 153(1–2):514–524, doi:10.1016/j.jhazmat.2007.08.094

  • Rickard D, Grimes S, Butler I, Oldroyd A, Davies KL (2007) Botanical constraints on pyrite formation. Chem Geol 236(3–4):228–246, doi:10.1016/j.chemgeo.2006.09.011

  • Robb DA (2013) Metals and Micronutrients: Uptake and Utilization By Plants. Elsevier Science

  • Rodríguez AM, Durán-Barrantes MM, Borja R, Sánchez E, Colmenarejo MF, Raposo F (2009) Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: effect of pH. J Hazard Mater 165(1–3):759–765, doi:10.1016/j.jhazmat.2008.10.053

  • Rodriguez RP, Vich DV, Garcia ML, Varesche MBA, Zaiat M (2015) Application of horizontal-flow anaerobic immobilized biomass reactor for bioremediation of acid mine drainage. Journal of Water and Health doi:10.2166/wh.2015.241

  • Rong J, Niu Z, Lee LA, Wang Q (2011) 2.06—Chemistry and materials development of protein-based nanoparticles. In: David LA, Gregory DS, Gary PW (eds) Comprehensive nanoscience and technology. Academic, Amsterdam, pp 153–174

    Chapter  Google Scholar 

  • Rosa IC, Costa R, Goncalves F, Pereira JL (2014) Bioremediation of metal-rich effluents: could the invasive bivalve work as a biofilter? J Environ Qual 43(5):1536–45. doi:10.2134/jeq2014.02.0069

    Article  CAS  PubMed  Google Scholar 

  • Roy T (1961) Preparing nickel and cobalt concentrates. Industrial & Engineering Chemistry 53(7):559–566. doi:10.1021/ie50619a026

    Article  CAS  Google Scholar 

  • Sagade AA, Sharma R (2008) Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature. Sensors Actuators B Chem 133(1):135–143

    Article  CAS  Google Scholar 

  • Sahinkaya E, Gungor M, Bayrakdar A, Yucesoy Z, Uyanik S (2009) Separate recovery of copper and zinc from acid mine drainage using biogenic sulfide. J Hazard Mater 171(1-3):901–906. doi:10.1016/j.jhazmat.2009.06.089

    Article  CAS  PubMed  Google Scholar 

  • Sahraei R, Daneshfar A, Goudarzi A, Abbasi S, Ara MHM, Rahimi F (2013) Optical properties of nanocrystalline ZnS:Mn thin films prepared by chemical bath deposition method. J Mater Sci Mater Electron 24(1):260–266. doi:10.1007/s10854-012-0730-9

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci India 85(2):162–170

    CAS  Google Scholar 

  • Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165(4):803–810, doi:10.1016/S0168-9452(03)00274-7

  • Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl Environ Microb 65(1):319–321

    CAS  Google Scholar 

  • Senapati US, Sarkar D (2014) Characterization of biosynthesized zinc sulphide nanoparticles using edible mushroom Pleurotuss ostreatu. Indian J Phys 88(6):557–562. doi:10.1007/s12648-014-0456-z

    Article  CAS  Google Scholar 

  • Senapati S, Syed A, Khan S, Pasricha R, Khan M, Kumar R, Ahmad A (2014) Extracellular biosynthesis of metal sulfide nanoparticles using the fungus Fusarium oxysporum. Curr Nanosci 10(4):588–595

    Article  CAS  Google Scholar 

  • Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Progr 27(5):1464–1469. doi:10.1002/Btpr.651

    Article  CAS  Google Scholar 

  • Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials 8(11):7278–7308

    Article  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microb 66(7):3083–3087. doi:10.1128/aem.66.7.3083-3087.2000

    Article  CAS  Google Scholar 

  • She YY, Yang J, Qiu KQ (2010) Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and Na2S under ultrasonic. T Nonferr Metal Soc 20:S211–S215

    Article  CAS  Google Scholar 

  • Shen L, Bao N, Prevelige PE, Gupta A (2010) Escherichia coli bacteria-templated synthesis of nanoporous cadmium sulfide hollow microrods for efficient photocatalytic hydrogen production. J Phys Chem C 114(6):2551–2559. doi:10.1021/jp910842f

    Article  CAS  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11(3):253–256. doi:10.1002/(sici)1521-4095(199903)11:3<253::aid-adma253>3.0.co;2-7

    Article  CAS  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Miner Eng 19(2):105–116. doi:10.1016/j.mineng.2005.08.006

    Article  CAS  Google Scholar 

  • Sheoran AS, Sheoran V, Choudhary RP (2010) Bioremediation of acid-rock drainage by sulphate-reducing prokaryotes: a review. Miner Eng 23(14):1073–1100. doi:10.1016/j.mineng.2010.07.001

    Article  CAS  Google Scholar 

  • Shih Z-Y, Periasamy AP, Hsu P-C, Chang H-T (2013) Synthesis and catalysis of copper sulfide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Appl Catal B Environ 132–133(0):363–369, doi:10.1016/j.apcatb.2012.12.004

  • Shimada H (2003) Morphology and orientation of MoS2 clusters on Al2O3 and TiO2 supports and their effect on catalytic performance. Catal Today 86(1–4):17–29, doi:10.1016/S0920-5861(03)00401-2

  • Sieburth JM (1988) The trophic roles of bacteria in marine ecosystems are complicated by synergistic-consortia and mixotrophic-cometabolism: the plenary lecture in memory of Professor Sebastiano Genovese. Prog Oceanogr 21(2):117–128, doi:10.1016/0079-6611(88)90030-4

  • Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57(1):97–101, doi:10.1016/j.colsurfb.2007.01.010

  • Slawson RM, Vandyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27(1):72–79. doi:10.1016/0147-619x(92)90008-X

    Article  CAS  PubMed  Google Scholar 

  • Song J, Kwon E-Y, Kim B (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164. doi:10.1007/s00449-009-0373-2

    Article  PubMed  CAS  Google Scholar 

  • Sracek O, Kříbek B, Mihaljevič M, Majer V, Veselovský F, Vencelides Z, Nyambe I (2012) Mining-related contamination of surface water and sediments of the Kafue River drainage system in the Copperbelt district, Zambia: an example of a high neutralization capacity system. J Geochem Explor 112(0):174–188, doi:10.1016/j.gexplo.2011.08.007

  • Su QM, Li J, Zhong G, Du GH, Xu BS (2011) In situ synthesis of iron/nickel sulfide nanostructures-filled carbon nanotubes and their electromagnetic and microwave-absorbing properties. J Phys Chem C 115(5):1838–1842

    Article  CAS  Google Scholar 

  • Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO (2012) Chapter one—heterologous gene expression in filamentous fungi. In: Geoffrey MG, Sima S (eds) Advances in Applied Microbiology. vol Volume 81. Academic Press, pp 1-61

  • Subtil E, Cassini S, Gonçalves R (2012) Sulfate and dissolved sulfide variation under low COD/sulfate ratio in Up-flow Anaerobic Sludge Blanket (UASB) treating domestic wastewater. Ambi-Agua 7(1) doi:doi:10.4136/ambi-agua.849

  • Sukola K, Wang FY, Tessier A (2005) Metal-sulfide species in oxic waters. Anal Chim Acta 528(2):183–195. doi:10.1016/j.aca.2004.10.009

    Article  CAS  Google Scholar 

  • Summers AO (1992) The hard stuff: metals in bioremediation. Curr Opin Biotechnol 3(3):271–276, doi:10.1016/0958-1669(92)90103-P

  • Suresh AK, Doktycz MJ, Wang W, Moon J-W, Gu B, Meyer Iii HM, Hensley DK, Allison DP, Phelps TJ, Pelletier DA (2011) Monodispersed biocompatible silver sulfide nanoparticles: facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater 7(12):4253–4258, doi:10.1016/j.actbio.2011.07.007

  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559, doi:10.1016/j.chembiol.2004.08.022

  • Sweeny PG, Stenberg VI, Hei RD, Montano PA (1987) Hydrocracking of diphenyl ether and diphenylmethane in the presence of iron sulphides and hydrogen sulphide. Fuel 66(4):532–541, doi:10.1016/0016-2361(87)90160-8

  • Tebo BM, Obraztsova AY (1998) Sulfate-reducing bacterium grows with Cr (VI), U (VI), Mn (IV), and Fe (III) as electron acceptors. FEMS Microbiol Lett 162(1):193–199

    Article  CAS  Google Scholar 

  • Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 6(2):257–262, doi:10.1016/j.nano.2009.07.002

  • Thimm JC, Burritt DJ, Ducker WA, Melton LD (2000) Celery (Apium graveolens L.) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212(1):25–32. doi:10.1007/s004250000359

    Article  CAS  PubMed  Google Scholar 

  • Tokuda H, Kuchar D, Mihara N, Kubota M, Matsuda H, Fukuta T (2008) Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H2S in single-metal and multi-metal systems. Chemosphere 73(9):1448–1452, doi:10.1016/j.chemosphere.2008.07.073

  • Tripathi R, Bhadwal AS, Singh P, Shrivastav A, Singh M, Shrivastav B (2014) Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Advances in Natural Sciences: Nanoscience and Nanotechnology 5(2):025006

  • Trudinger PA, Chambers LA, Smith JW (1985) Low-temperature sulfate reduction—biological versus abiological. Can J Earth Sci 22(12):1910–1918

    Article  CAS  Google Scholar 

  • Upadhyay RK, Sharma M, Singh DK, Amritphale SS, Chandra N (2012) Photo degradation of synthetic dyes using cadmium sulfide nanoparticles synthesized in the presence of different capping agents. Sep Purif Technol 88(0):39–45, doi:10.1016/j.seppur.2011.11.040

  • Utgikar VP, Harmon SM, Chaudhary N, Tabak HH, Govind R, Haines JR (2002) Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environ Toxicol 17(1):40–48. doi:10.1002/tox.10031

    Article  CAS  PubMed  Google Scholar 

  • Vaidhyanathan B, Ganguli M, Rao KJ (1995) Fast solid-state synthesis of metal vanadates and chalcogenides using microwave irradiation. Mater Res Bull 30(9):1173–1177

    Article  CAS  Google Scholar 

  • Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46(3):549–570. doi:10.1016/j.watres.2011.11.024

    Article  CAS  PubMed  Google Scholar 

  • Valls M, de Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338, doi:10.1016/S0168-6445(02)00114-6

  • Velasco A, Ramírez M, Volke-Sepúlveda T, González-Sánchez A, Revah S (2008) Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. J Hazard Mater 151(2–3):407–413, doi:10.1016/j.jhazmat.2007.06.004

  • Viggi C, Pagnanelli F, Cibati A, Uccelletti D, Palleschi C, Toro L (2010) Biotreatment and bioassessment of heavy metal removal by sulphate reducing bacteria in fixed bed reactors. Water Res 44(1):151–158, doi:10.1016/j.watres.2009.09.013

  • Villa-Gomez DK, Pakshirajan K, Maestro R, Mushi S, Lens PNL (2015) Effect of process variables on the sulfate reduction process in bioreactors treating metal-containing wastewaters: factorial design and response surface analyses. Biodegradation 26(4):299–311. doi:10.1007/s10532-015-9735-4

    Article  CAS  PubMed  Google Scholar 

  • Vít Z (2007) Iridium sulfide and Ir promoted Mo based catalysts. Appl Catal A Gen 322(0):142–151, doi:10.1016/j.apcata.2007.01.011

  • Wang H, Wu G, Park H, Jiang P, Sit W-H, van Griensven L, Wan J-F (2012) Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med 7(1):1–10. doi:10.1186/1749-8546-7-23

    Article  CAS  Google Scholar 

  • Watson JHP, Ellwood DC, Soper AK, Charnock J (1999) Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203(1–3):69–72, doi:10.1016/S0304-8853(99)00191-2

  • Wei X-W, Song X-J, Xu J, Ni Y-H, Zhang P (2005) Coating multi-walled carbon nanotubes with metal sulfides. Mater Chem Phys 92(1):159–163

    Article  CAS  Google Scholar 

  • Weiner GZJHD, Iowa City, IA 52242, US), Hartmann, Gunther (Oberdorf 84, D-53347 Alfter, DE) (2009) Combination of CpG and antibodies directed against CD19,CD20, CD22 or CD40 for the treatment or prevention of cancer.,

  • West JL, Halas NJ (2003) Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5:285–292. doi:10.1146/annurev.bioeng.5.011303.120723

    Article  CAS  PubMed  Google Scholar 

  • Xi Y, Hu C, Zhang X, Zhang Y, Wang ZL (2009) Optical switches based on nanowires synthesized by molten salt solvent method. Solid State Commun 149(43–44):1894–1896

    Article  CAS  Google Scholar 

  • Xu J, Murayama M, Roco CM, Veeramani H, Michel FM, Rimstidt JD, Winkler C, Hochella MF Jr (2016) Highly-defective nanocrystals of ZnS formed via dissimilatory bacterial sulfate reduction: a comparative study with their abiogenic analogues. Geochim Cosmochim Ac 180:1–14, doi:10.1016/j.gca.2016.02.007

  • Young CA, Taylor PR, Anderson CG (2008) Hydrometallurgy 2008: proceedings of the Sixth International Symposium. Society for Mining, Metallurgy & Exploration, Incorporated

  • Yu X-Y, Yu L, Lou XW (2015) Metal sulfide hollow nanostructures for electrochemical energy storage. Advanced Energy Materials:n/a-n/a doi:10.1002/aenm.201501333

  • Yue L, Wu Y, Liu X, Xin B, Chen S (2014) Controllable extracellular biosynthesis of bismuth sulfide nanostructure by sulfate-reducing bacteria in water–oil two-phase system. Biotechnol Progr 30(4):960–966. doi:10.1002/btpr.1894

    Article  CAS  Google Scholar 

  • Zagury G, Neculita C, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors: short review, applications, and research needs. Ottawa Geo 2007:14439–14446

    Google Scholar 

  • Zhang B, Ye X, Hou W, Zhao Y, Xie Y (2006) Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned Nanorods. J Phys Chem B 110(18):8978–8985. doi:10.1021/jp060769j

    Article  CAS  PubMed  Google Scholar 

  • Zhang W-h, Huang Z, He L-y, Sheng X-f (2012) Assessment of bacterial communities and characterization of lead-resistant bacteria in the rhizosphere soils of metal-tolerant Chenopodium ambrosioides grown on lead–zinc mine tailings. Chemosphere 87(10):1171–1178, doi:10.1016/j.chemosphere.2012.02.036

  • Zhu GQ, Liu P (2009) Low-temperature urea-assisted hydrothermal synthesis of Bi2S3 nanostructures with different morphologies. Cryst Res Technol 44(7):713–720. doi:10.1002/crat.200900137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding by Fundação para a Ciência e a Tecnologia (FCT) through project PTDC/AAG-TEC/2721/2012 is acknowledged. A. V. Girão also thanks FCT for the Post-Doc grant (SFRH/BPD/66407/2009). We thank the project CICECO-Aveiro Institute of Materials, POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when appropriate co-financed by FEDER under the PT2020 Partnership Agreement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Pinto da Costa.

Ethics declarations

Conflict of interests

The authors declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, J.P., Girão, A.V., Trindade, T. et al. Biological synthesis of nanosized sulfide semiconductors: current status and future prospects. Appl Microbiol Biotechnol 100, 8283–8302 (2016). https://doi.org/10.1007/s00253-016-7756-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7756-5

Keywords

Navigation