Skip to main content
Log in

Discovery of pentangular polyphenols hexaricins A–C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many novel microbial nature products were discovered from Actinobacteria by genome mining methods. However, only a few number of genome mining works were carried out in rare actinomycetes. An important reason precluding the genome mining efforts in rare actinomycetes is that most of them are recalcitrant to genetic manipulation. Herein, we chose the rare marine actinomycete Streptosporangium sp. CGMCC 4.7309 to explore its secondary metabolite diversity by genome mining. The genetic manipulation method has never been established for Streptosporangium strains. At first, we set up the genetic system of Streptosporangium sp. CGMCC 4.7309 unprecedentedly. The draft genome sequencing of Streptosporangium sp. CGMCC 4.7309 revealed that it contains more than 20 cryptic secondary metabolite biosynthetic clusters. A type II polyketide synthases-containing cluster (the hex cluster) was predicted to encode compounds with a pentangular polyphenol scaffold by in silico analysis. The products of the hex cluster were uncovered by comparing the metabolic profile of Streptosporangium sp. CGMCC 4.7309 with that of the hex30 inactivated mutant, in which a key ketoreductase gene was disrupted. Finally, three pentangular polyphenols were isolated and named as hexaricins A (1), B (2), and C (3). The inconsistency of the stereochemistry of C-15 in hexaricins A, B, and C indicates a branch point in their biosynthesis. Finally, the biosynthetic pathway of the hexaricins was proposed based on bioinformatics analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bachmann BO, Van Lanen SG, Baltz RH (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41(2):175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O’Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417(6885):141–147

    Article  PubMed  Google Scholar 

  • Berdy J (2005) Bioactive Microbial Metabolites. J Antibiot 58(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Blin K, Medema MH, Kazempour D, Fischbach MA, Breitling R, Takano E, Weber T (2013) AntiSMASH 2.0–a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res 41:204–212

    Article  Google Scholar 

  • Boddy CN (2014) Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J Ind Microbiol Biotechnol 41(2):443–450

    Article  CAS  PubMed  Google Scholar 

  • Boudjella H, Zitouni A, Coppel Y, Mathieu F, Monje MC, Sabaou N, Lebrihi A (2010) Antibiotic R2, a new angucyclinone compound from Streptosporangium sp. Sg3. J Antibiot 63(12):709–711

    CAS  PubMed  Google Scholar 

  • Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G (2013) SpecDis: Quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25(4):243–249

  • Challis GL (2014) Exploitation of the Streptomyces coelicolor A3(2) genome sequence for discovery of new natural products and biosynthetic pathways. J Ind Microbiol Biotechnol 41(2):219–232

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wendt-Pienkoski E, Rajski SR, Shen B (2009) In vivo investigation of the roles of FdmM and FdmM1 in fredericamycin biosynthesis unveiling a new family of oxygenases. J Biol Chem 284(37):24735–24743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Wendt-Pienkowski E, Ju J, Lin S, Rajski SR, Shen B (2010) Characterization of FdmV as an amide synthetase for fredericamycin A biosynthesis in Streptomyces griseus ATCC 43944. J Biol Chem 285(50):38853–38860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farnet Chris M, Dimitriadou V, Bachmann Brian O (2004) Farnesyl dibenzodiazepinones and methods of treating cancer using same. US Patent 7,186,713

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155(2):223–229

    Article  CAS  PubMed  Google Scholar 

  • Frisch MJ, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam N, Klene M, Knox J, Cross J, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas Ö, Foresman J, Ortiz J, Cioslowski J, Fox D (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford

    Google Scholar 

  • Goto H, Ohta K, Kamakura T, Obata S, Nakayama N, Matsumoto T, Osawa E (2013) Conflex version 7.0. Conflex Corp, Tokyo

    Google Scholar 

  • Hall BG (2013) Building phylogenetic trees from molecular data with MEGA. Mol Biol Evol 30(5):1229–1235

    Article  CAS  PubMed  Google Scholar 

  • Helfrich EJ, Reiter S, Piel J (2014) Recent advances in genome-based polyketide discovery. Curr Opin Biotechnol 29:107–115

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  • Javidpour P, Bruegger J, Srithahan S, Korman TP, Crump MP, Crosby J, Burkart MD, Tsai SC (2013) The determinants of activity and specificity in actinorhodin type II polyketide ketoreductase. Chem Biol 20(10):1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Kang HS, Brady SF (2014) Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc 136(52):18111–18119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieser T, Bibb M, Buttner M, Chater K, Hopwood D (2000) Practical streptomyces genetics. John Innes Foundation, Norwich

    Google Scholar 

  • Li C, Evans RM (1997) Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Res 25(20):4165–4166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Li J, Guo Z, Tang W, Han J, Meng X, Hao T, Zhu Y, Zhang L, Chen Y (2015) An efficient blue-white screening based gene inactivation system for Streptomyces. Appl Microbiol Biotechnol 99(4):1923–1933

    Article  CAS  PubMed  Google Scholar 

  • Lopez P, Hornung A, Welzel K, Unsin C, Wohlleben W, Weber T, Pelzer S (2010) Isolation of the lysolipin gene cluster of Streptomyces tendae Tü 4042. Gene 461(1–2):5–14

    Article  CAS  PubMed  Google Scholar 

  • Nolan M, Sikorski J, Jando M, Lucas S, Lapidus A, Glavina Del Rio T, Chen F, Tice H, Pitluck S, Cheng JF, Chertkov O, Sims D, Meincke L, Brettin T, Han C, Detter JC, Bruce D, Goodwin L, Land M, Hauser L, Chang YJ, Jeffries CD, Ivanova N, Mavromatis K, Mikhailova N, Chen A, Palaniappan K, Chain P, Rohde M, Goker M, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Streptosporangium roseum type strain (NI 9100). Stand Genomic Sci 2(1):29–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Nonomura H, Ohara Y (1960) Distribution of the actinomycetes in soil. IV. The isolation and classification of the genus Streptosporangium. J Ferment Bioeng 38:405–409

    Google Scholar 

  • Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190(11):4050–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M (2001) Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proc Natl Acad Sci U S A 98(21):12215–12220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumi Y, Ohhata N, Iwamoto T, Shigematsu N, Sakamoto K, Nishikawa M, Kiyoto S, Okuhara M (1994) WS79089A, B and C, new endothelin converting enzyme inhibitors isolated from Streptosporangium roseum. No. 79089. J Antibiot 47(6):619–630

    Article  CAS  PubMed  Google Scholar 

  • Winter JM, Behnken S, Hertweck C (2011) Genomics-inspired discovery of natural products. Curr Opin Chem Biol 15(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Schenk A, Hertweck C (2007) Molecular analysis of the benastatin biosynthetic pathway and genetic engineering of altered fatty acid-polyketide hybrids. J Am Chem Soc 129(18):6022–6030

    Article  CAS  PubMed  Google Scholar 

  • Zerikly M, Challis GL (2009) Strategies for the discovery of new natural products by genome mining. Chembiochem 10(4):625–633

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D (2012) Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem Biol 19(3):422–432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jinwei Ren, Dr. Guomin Ai, and Dr. Wenzhao Wang, Institute of Microbiology, Chinese Academy of Sciences, for MS and NMR data collection. This work was supported in part by the Ministry of Science and Technology of China (2013CB734000, 2015CB150600) and the National Natural Science Foundation of China (31370095 and 31522001). Y.C. is an awardee for the “Hundred Talents Program” of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wensheng Xiang or Yihua Chen.

Ethics declarations

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Jun Tian and Haiyan Chen contributed equally to this work.

Electronic Supplementary Materials

ESM 1

(PDF 827 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, J., Chen, H., Guo, Z. et al. Discovery of pentangular polyphenols hexaricins A–C from marine Streptosporangium sp. CGMCC 4.7309 by genome mining. Appl Microbiol Biotechnol 100, 4189–4199 (2016). https://doi.org/10.1007/s00253-015-7248-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7248-z

Keywords

Navigation