Skip to main content
Log in

Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

α-Ketoglutarate (α-KG) is an important intermediate in the tricarboxylic acid cycle and has broad applications. The mitochondrial ketoglutarate dehydrogenase (KGDH) complex catalyzes the oxidation of α-KG to succinyl-CoA. Disruption of KGDH, which may enhance the accumulation of α-KG theoretically, was found to be lethal to obligate aerobic cells. In this study, individual overexpression of dihydrolipoamide succinyltransferase (DLST), which serves as the inner core of KGDH, decreased overall activity of the enzyme complex. Furthermore, two conserved active site residues of DLST, His419, and Asp423 were identified. In order to determine whether these residues are engaged in enzyme reaction or not, these two conserved residues were individually mutated. Analysis of the kinetic parameters of the enzyme variants provided evidence that the catalytic reaction of DLST depended on residues His419 and Asp423. Overexpression of mutated DLST not only impaired balanced assembly of KGDH, but also disrupted the catalytic integrity of the enzyme complex. Replacement of the Asp423 residue by glutamate increased extracellular α-KG by 40 % to 50 g L−1 in mutant strain. These observations uncovered catalytic roles of two conserved active site residues of DLST and provided clues for effective metabolic strategies for rational carbon flux control for the enhanced production of α-KG and related bioproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansaldi M, Lepelletier M, Mejean V (1996) Site-specific mutagenesis by using an accurate recombinant polymerase chain reaction method. Anal Biochem 234(1):110–111. doi:10.1006/abio.1996.0060

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Tang H, Ma H, Holland TC, Ng KYS, Salley SO (2011) Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour Technol 102(2):1649–1655. doi:10.1016/j.biortech.2010.09.062

    Article  PubMed  CAS  Google Scholar 

  • Commichau FM, Forchhammer K, Stülke J (2006) Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol 9(2):167–172. doi:10.1016/j.mib.2006.01.001

    Article  PubMed  CAS  Google Scholar 

  • Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD (2011) α-Ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7(12):894–901. doi:10.1038/nchembio.685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernie AR, Carrari F, Sweetlove LJ (2004) Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport. Curr Opin Plant Biol 7(3):254–261. doi:10.1016/j.pbi.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  • Frank RAW, Pratap JV, Pei XY, Perham RN, Luisi BF (2005) The molecular origins of specificity in the assembly of a multienzyme complex. Structure 13(8):1119–1130. doi:10.1016/j.str.2005.04.021

    Article  PubMed  CAS  Google Scholar 

  • Fries M, Jung HI, Perham RN (2003) Reaction mechanism of the heterotetrameric (α2β2) E1 component of 2-oxo acid dehydrogenase multienzyme complexes. Biochemistry 42(23):6996–7002. doi:10.1021/bi027397z

    Article  PubMed  CAS  Google Scholar 

  • Fries M, Stott KM, Reynolds S, Perham RN (2007) Distinct modes of recognition of the lipoyl domain as substrate by the E1 and E3 components of the pyruvate dehydrogenase multienzyme complex. J Mol Biol 366(1):132–139. doi:10.1016/j.jmb.2006.11.018

    Article  PubMed  CAS  Google Scholar 

  • Fuller CC, Reed LJ, Oliver RM, Hackert ML (1979) Crystallization of a dihydrolipoyl transacetylase–dihydrolipoyl dehydrogenase subcomplex and its implications regarding the subunit structure of the pyruvate dehydrogenase complex from Escherichia coli. Biochem Biophys Res Commun 90(2):431–438. doi:10.1016/0006-291x(79)91253-1

    Article  PubMed  CAS  Google Scholar 

  • Gibbs MR, Moody PCE, Leslie AGW (1990) Crystal structure of the aspartic acid-199→asparagine mutant of chloramphenicol acetyltransferase to 2.35Å resolution: structural consequences of disruption of a buried salt bridge. Biochemistry 29(51):11261–11265. doi:10.1021/bi00503a015

    Article  PubMed  CAS  Google Scholar 

  • Griffin TA, Chuang DT (1990) Genetic reconstruction and characterization of the recombinant transacylase (E2b) component of bovine branched-chain alpha-keto acid dehydrogenase complex. Implication of histidine 391 as an active site residue. J Biol Chem 265(22):13174–13180

    PubMed  CAS  Google Scholar 

  • Groenewald M, Boekhout T, Neuveglise C, Gaillardin C, van Dijck PWM, Wyss M (2014) Yarrowia lipolytica: safety assessment of an oleaginous yeast with a great industrial potential. Crit Rev Microbiol 40(3):187–206. doi:10.3109/1040841x.2013.770386

    Article  PubMed  CAS  Google Scholar 

  • Guo HW, Madzak C, Du GC, Zhou JW, Chen J (2014) Effects of pyruvate dehydrogenase subunits overexpression on the alpha-ketoglutarate production in Yarrowia lipolytica WSH-Z06. Appl Microbiol Biotechnol 98(16):7003–7012. doi:10.1007/s00253-014-5745-0

    Article  PubMed  CAS  Google Scholar 

  • Heckert LL, Butler MH, Reimers JM, Albe KR, Wright BE (1989) Purification and characterization of the 2-oxoglutarate dehydrogenase complex from Dictyostelium discoideum. J Gen Microbiol 135(1):155–161

    PubMed  CAS  Google Scholar 

  • Hendle J, Mattevi A, Westphal AH, Spee J, de Kok A, Tepliakov A, Hol WGJ (1995) Crystallographic and enzymic investigations on the role of Ser558, His610, and Asn614 in the catalytic mechanism of Azotobacter vinelandii dihydrolipoamide acetyltransferase (E2p). Biochemistry 34(13):4287–4298. doi:10.1021/bi00013a018

    Article  PubMed  CAS  Google Scholar 

  • Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Potter M, Marx A, Barth G (2011) Overexpression of α-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89(5):1519–1526. doi:10.1007/s00253-010-2957-9

    Article  PubMed  CAS  Google Scholar 

  • Hommes NG, Kurth EG, Sayavedra-Soto LA, Arp DJ (2006) Disruption of sucA, which encodes the E1 subunit of alpha-ketoglutarate dehydrogenase, affects the survival of Nitrosomonas europaea in stationary phase. J Bacteriol 188(1):343–347. doi:10.1128/Jb.188.1.343-347.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kamzolova SV, Morgunov IG (2013) alpha-Ketoglutaric acid production from rapeseed oil by Yarrowia lipolytica yeast. Appl Microbiol Biotechnol 97(12):5517–5525. doi:10.1007/s00253-013-4772-6

    Article  PubMed  CAS  Google Scholar 

  • Kamzolova SV, Chiglintseva MN, Yusupova AI, Vinokurova NG, Lysanskaya VY, Morgunov IG (2012) Biotechnological potential of Yarrowia lipolytica grown under thiamine limitation. Food Technol Biotechnol 50(4):412–419

    CAS  Google Scholar 

  • Kiss G, Konrad C, Doczi J, Starkov AA, Kawamata H, Manfredi G, Zhang SF, Gibson GE, Beal MF, Adam-Vizi V, Chinopoulos C (2013) The negative impact of alpha-ketoglutarate dehydrogenase complex deficiency on matrix substrate-level phosphorylation. FASEB J 27(6):2392–2406. doi:10.1096/fj.12-220202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knapp JE, Mitchell DT, Yazdi MA, Ernst SR, Reed LJ, Hackert ML (1998) Crystal structure of the truncated cubic core component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. J Mol Biol 280(4):655–668. doi:10.1006/jmbi.1998.1924

    Article  PubMed  CAS  Google Scholar 

  • Knapp JE, Carroll D, Lawson JE, Ernst SR, Reed LJ, Hackert ML (2000) Expression, purification, and structural analysis of the trimeric form of the catalytic domain of the Escherichia coli dihydrolipoamide succinyltransferase. Protein Sci 9(1):37–48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koike K, Suematsu T, Ehara M (2000) Cloning, overexpression and mutagenesis of cDNA encoding dihydrolipoamide succinyltransferase component of the porcine 2-oxoglutarate dehydrogenase complex. Eur J Biochem 267(10):3005–3016. doi:10.1046/j.1432-1327.2000.01320.x

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-B, Jo J-H, Kim M-H, Lee H-H, Hyun H-H (2013) Enhanced production of α-ketoglutarate by fed-batch culture in the metabolically engineered strains of Corynebacterium glutamicum. Biotechnol Bioprocess Eng 18(4):770–777. doi:10.1007/s12257-013-0106-x

    Article  CAS  Google Scholar 

  • Lessard IA, Perham RN (1994) Expression in Escherichia coli of genes encoding the E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex of Bacillus stearothermophilus and assembly of a functional E1 component in vitro. J Biol Chem 269(14):10378–10383

    PubMed  CAS  Google Scholar 

  • Lessard IAD, Fuller C, Perham RN (1996) Competitive interaction of component enzymes with the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus: kinetic analysis using surface plasmon resonance detection. Biochemistry 35(51):16863–16870. doi:10.1021/Bi961683r

    Article  PubMed  CAS  Google Scholar 

  • Lessard IAD, Domingo GJ, Borges A, Perham RN (1998) Expression of genes encoding the E2 and E3 components of the Bacillus stearothermophilus pyruvate dehydrogenase complex and the stoichiometry of subunit interaction in assembly in vitro. Eur J Biochem 258(2):491–501. doi:10.1046/j.1432-1327.1998.2580491.x

    Article  PubMed  CAS  Google Scholar 

  • Lin M, Behal R, Oliver DJ (2003) Disruption of plE2, the gene for the E2 subunit of the plastid pyruvate dehydrogenase complex, in Arabidopsis causes an early embryo lethal phenotype. Plant Mol Biol 52(4):865–872. doi:10.1023/a:1025076805902

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Liu L, Zhou J, Shin H-d, Chen RR, Madzak C, Li J, Du G, Chen J (2013) Biosynthesis of homoeriodictyol from eriodictyol by flavone 3′-O-methyltransferase from recombinant Yarrowia lioplytica: heterologous expression, biochemical characterization, and optimal transformation. J Biotechnol 167(4):472–478. doi:10.1016/j.jbiotec.2013.07.025

    Article  PubMed  CAS  Google Scholar 

  • Mattevi A, Obmolova G, Kalk KH, Teplyakov A, Hol WGJ (1993) Crystallographic analysis of substrate binding and catalysis in dihydrolipoyl transacetylase (E2p). Biochemistry 32(15):3887–3901. doi:10.1021/Bi00066a007

    Article  PubMed  CAS  Google Scholar 

  • Najdi TS, Hatfield GW, Mjolsness ED (2010) A ‘random steady-state’ model for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase enzyme complexes. Phys Biol 7:16016–16016

    Article  PubMed  CAS  Google Scholar 

  • Nakai T, Kuramitsu S, Kamiya N (2008) Structural bases for the specific interactions between the E2 and E3 components of the Thermus thermophilus 2-oxo acid dehydrogenase complexes. J Biochem 143(6):747–758. doi:10.1093/jb/mvn033

    Article  PubMed  CAS  Google Scholar 

  • Nicaud JM (2012) Yarrowia lipolytica. Yeast 29(10):409–418. doi:10.1002/yea.2921

    Article  PubMed  CAS  Google Scholar 

  • Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8(2):168–173. doi:10.1016/j.mib.2005.02.011

    Article  PubMed  CAS  Google Scholar 

  • Niu XD, Stoops JK, Reed LJ (1990) Overexpression and mutagenesis of the catalytic domain of dihydrolipoamide acetyltransferase from Saccharomyces cerevisiae. Biochemistry 29(37):8614–8619. doi:10.1021/bi00489a017

    Article  PubMed  CAS  Google Scholar 

  • Nulton-Persson AC, Szweda LI (2001) Modulation of mitochondrial function by hydrogen peroxide. J Biol Chem 276(26):23357–23361. doi:10.1074/jbc.M100320200

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Yovkova V, Barth G (2011) Overproduction and secretion of α-ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92(4):689–695. doi:10.1007/s00253-011-3597-4

    Article  PubMed  CAS  Google Scholar 

  • Otto C, Yovkova V, Aurich A, Mauersberger S, Barth G (2012) Variation of the by-product spectrum during α-ketoglutaric acid production from raw glycerol by overexpression of fumarase and pyruvate carboxylase genes in Yarrowia lipolytica. Appl Microbiol Biotechnol 95(4):905–917. doi:10.1007/s00253-012-4085-1

    Article  PubMed  CAS  Google Scholar 

  • Russell GC, Guest JR (1990) Overexpression of restructured pyruvate dehydrogenase complexes and site-directed mutagenesis of a potential active-site histidine residue. Biochem J 269(2):443–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shiba Y, Paradise EM, Kirby J, Ro D-K, Keasing JD (2007) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metab Eng 9(2):160–168. doi:10.1016/j.ymben.2006.10.005

    Article  PubMed  CAS  Google Scholar 

  • Shim DJ, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang JJ, Jordan F, Farinas ET (2011) Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; Substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry 50(35):7705–7709. doi:10.1021/bi200936n

    Article  PubMed Central  CAS  Google Scholar 

  • Stottmeister U, Aurich A, Wilde H, Andersch J, Schmidt S, Sicker D (2005) White biotechnology for green chemistry: fermentative 2-oxocarboxylic acids as novel building blocks for subsequent chemical syntheses. J Ind Microbiol Biotechnol 32(11-/12):651–664. doi:10.1007/s10295-005-0254-x

    Article  PubMed  CAS  Google Scholar 

  • Sykes SE, Hajduk SL (2013) Dual functions of alpha-ketoglutarate dehydrogenase E2 in the krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei. Eukaryot Cell 12(1):78–90. doi:10.1128/ec.00269-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vijayakrishnan S, Callow P, Nutley MA, McGow DP, Gilbert D, Kropholler P, Cooper A, Byron O, Lindsay JG (2011) Variation in the organization and subunit composition of the mammalian pyruvate dehydrogenase complex E2/E3BP core assembly. Biochem J 437:565–574. doi:10.1042/Bj20101784

    Article  PubMed  CAS  Google Scholar 

  • Wu SX, Letchworth GJ (2004) High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques 36(1):152–154

    PubMed  CAS  Google Scholar 

  • Yin XX, Madzak C, Du GC, Zhou JW, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by regulation of the pyruvate carboxylation pathway. Appl Microbiol Biotechnol 96(6):1527–1537. doi:10.1007/s00253-012-4192-z

    Article  PubMed  CAS  Google Scholar 

  • Yovkova V, Otto C, Aurich A, Mauersberger S, Barth G (2014) Engineering the alpha-ketoglutarate overproduction from raw glycerol by overexpression of the genes encoding NADP+-dependent isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica. Appl Microbiol Biotechnol 98(5):2003–2013. doi:10.1007/s00253-013-5369-9

    Article  PubMed  CAS  Google Scholar 

  • Yu ZZ, Du GC, Zhou JW, Chen J (2012) Enhanced α-ketoglutaric acid production in Yarrowia lipolytica WSH-Z06 by an improved integrated fed-batch strategy. Bioresour Technol 114:597–602. doi:10.1016/j.biortech.2012.03.021

    Article  PubMed  CAS  Google Scholar 

  • Yuzbashev TV, Yuzbasheva EY, Sobolevskaya TI, Laptev IA, Vybornaya TV, Larina AS, Matsui K, Fukui K, Sineoky SP (2010) Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol Bioeng 107(4):673–682. doi:10.1002/bit.22859

    Article  PubMed  CAS  Google Scholar 

  • Zhou JW, Zhou HY, Du GC, Liu LM, Chen J (2010) Screening of a thiamine-auxotrophic yeast for α-ketoglutaric acid overproduction. Lett Appl Microbiol 51(3):264–271. doi:10.1111/j.1472-765X.2010.02889.x

    Article  PubMed  CAS  Google Scholar 

  • Zhou JW, Yin XX, Madzak C, Du GC, Chen J (2012) Enhanced α-ketoglutarate production in Yarrowia lipolytica WSH-Z06 by alteration of the acetyl-CoA metabolism. J Biotechnol 161(3):257–264. doi:10.1016/j.jbiotec.2012.05.025

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31130043, 21276109), the Author of National Excellent Doctoral Dissertation of PR China (FANEDD, 201256), the Program for New Century Excellent Talents in University (NCET-12-0876), the Fundamental Research Funds for the Central Universities (JUSRP51307A), and the 111 Project (111-2-06).

Conflict of interest

The authors declare no conflict of competing financial interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Madzak, C., Du, G. et al. Mutagenesis of conserved active site residues of dihydrolipoamide succinyltransferase enhances the accumulation of α-ketoglutarate in Yarrowia lipolytica . Appl Microbiol Biotechnol 100, 649–659 (2016). https://doi.org/10.1007/s00253-015-6995-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6995-1

Keywords

Navigation