Skip to main content
Log in

A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The genome of the coprophilous fungus Podospora anserina displays an impressive array of genes encoding hemicellulolytic enzymes. In this study, we focused on a putative carbohydrate esterase (CE) from family 16 (CE16) that bears a carbohydrate-binding module from family CBM1. The protein was heterologously expressed in Pichia pastoris and purified to electrophoretic homogeneity. The P. anserina CE16 enzyme (PaCE16A) exhibited different catalytic properties than so far known CE16 esterases represented by the Trichoderma reesei CE16 acetyl esterase (TrCE16). A common property of both CE16 esterases is their exodeacetylase activity, i.e., deesterification at positions 3 and 4 of monomeric xylosides and the nonreducing end xylopyranosyl (Xylp) residue of oligomeric homologues. However, the PaCE16A showed lower positional specificity than TrCE16 and efficiently deacetylated also position 2. The major difference observed between PaCE16A and TrCE16 was found on polymeric substrate, acetylglucuronoxylan. While TrCE16 does not attack internal acetyl groups, PaCE16A deacetylated singly and doubly acetylated Xylp residues in the polymer to such an extent that it resulted in the polymer precipitation. Similarly as typical acetylxylan esterases belonging to CE1, CE4, CE5, and CE6 families, PaCE16A did not attack 3-O-acetyl group of xylopyranosyl residues carrying 4-O-methyl-d-glucuronic acid at position 2. PaCE16A thus represents a CE16 member displaying unique catalytic properties, which are intermediate between the TrCE16 exodeacetylase and acetylxylan esterases designed to deacetylate polymeric substrate. The catalytic versatility of PaCE16A makes the enzyme an important candidate for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alalouf O, Balazs Y, Volkinshtein M, Grimpel Y, Shoham G, Shoham Y (2011) A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 286:41993–42001. doi:10.1074/jbc.M111.301051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Appeldoorn MM, de Waard P, Kabel MA, Gruppen H, Schols HA (2013) Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation. Carbohydr Res 381:33–42. doi:10.1016/j.carres.2013.08.024

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Côté GL, Kremnický Ľ, Weisleder D, Greene RV (1996) Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates. Biochim Biophys Acta 1298:209–222. doi:10.1016/S0167-4838(96)00132-X

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Hirsch J, la Grange DC, van Zyl WH, Prior BA (2000) A chromogenic substrate for a β-xylosidase-coupled assay of α-glucuronidase. Anal Biochem 286:289–294. doi:10.1006/abio.2000.4810

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Cziszárová M, Agger JW, Li X-L, Puchart V, Vršanská M, Eijsink VGH, Westereng B (2014a) Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biochim Biophys Acta 1840:516–525. doi:10.1016/j.bbagen.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Westereng B, Puchart V, de Maayer P, Cowan DA (2014b) Recent progress in understanding the mode of action of acetylxylan esterases. J Appl Glycosci 61:35–44. doi:10.5458/jag.jag.JAG-2013_018

  • Bischof R, Fourtis L, Limbeck A, Gamauf C, Seiboth B, Kubicek CP (2013) Comparative analysis of the Trichoderma reesei transcriptome during growth on the cellulase inducing substrates wheat straw and lactose. Biotechnol Biofuels 6:127. doi:10.1186/1754-6834-6-127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bounias M (1980) N-(1-Naphthyl)ethylenediamine dihydrochloride as a new reagent for nanomole quantification of sugars on thin-layer plates by a mathematical calibration process. Anal Biochem 106:291–295. doi:10.1016/0003-2697(80)90523-0

    Article  CAS  PubMed  Google Scholar 

  • Bouveng HO, Garegg PJ, Lindberg B (1960) Positions of O-acetyl groups in birch xylan. Acta Chem Scand 14:742–748. doi:10.3891/acta.chem.scand.14-0742

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  • Busse-Wicher M, Gomes TCF, Tryfona T, Nikolovski N, Syott K, Grantham NJ, Bolam DN, Skaf MS, Dupree P (2014) The pattern of xylan acetylation suggests xylan may interact with cellulose microfibrils as a twofold helical screw in the secondary plant cell wall of Arabidopsis thaliana. Plant J 79:492–506. doi:10.1111/tpj.12575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Couturier M, Haon M, Coutinho PM, Henrissat B, Lesage-Meessen L, Berrin J-G (2011) Podospora anserina hemicellulases potentiate the Trichoderma reesei secretome for saccharification of lignocellulosic biomass. Appl Environ Microbiol 77:237–246. doi:10.1128/AEM.01761-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury J-M, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EGJ, Henrissat B, Khoury REL, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P (2008) The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 9: art. R77. doi: 10.1186/gb-2008-9-5-r77

  • Häkkinen M, Arvas M, Oja M, Aro N, Penttilä M, Saloheimo M, Pakula TM (2012) Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates. Microb Cell Fact 11:art. 134. doi:10.1186/1475-2859-11-134

    Article  Google Scholar 

  • Hakulinen N, Tenkanen M, Rouvinen J (2000) Three-dimensional structure of the catalytic core of acetylxylan esterase from Trichoderma reesei: insights into the deacetylation mechanism. J Struct Biol 132:180–190. doi:10.1006/jsbi.2000.4318

    Article  CAS  PubMed  Google Scholar 

  • Koutaniemi S, van Gool MP, Juvonen M, Jokela J, Hinz SW, Schols HA, Tenkanen M (2013) Distinct roles of carbohydrate esterase family CE16 acetyl esterases and polymer-acting acetyl xylan esterases in xylan degradation. J Biotechnol 168:684–692. doi:10.1016/j.jbiotec.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  • Kremnický L, Biely P (2005) Unique mode of acetylation of oligosaccharides in aqueous two-phase system by Trichoderma reesei acetyl esterase. J Mol Catal B Enzym 37:72–78. doi:10.1016/j.molcatb.2005.09.011

    Article  Google Scholar 

  • Kremnický L, Mastihuba V, Côté GL (2004) Trichoderma reesei acetyl esterase catalyzes transesterification in water. J Mol Catal B Enzym 30:229–239. doi:10.1016/j.molcatb.2004.05.007

    Article  Google Scholar 

  • Li X-L, Skory CD, Cotta MA, Puchart V, Biely P (2008) Novel family of carbohydrate esterases, based on identification of the Hypocrea jecorina acetyl esterase gene. Appl Environ Microbiol 74:7482–7489. doi:10.1128/AEM.00807-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. doi:10.1093/nar/gkt1178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mastihubová M, Biely P (2004) Lipase-catalysed preparation of acetates of 4-nitrophenyl β-D-xylopyranoside and their use in kinetic studies of acetyl migration. Carbohydr Res 339:1353–1360. doi:10.1016/j.carres.2004.02.016

    Article  PubMed  Google Scholar 

  • Navarro D, Rosso M-N, Haon M, Olivé C, Bonnin E, Lesage-Meessen L, Chevret D, Coutinho PM, Henrissat B, Berrin J-G (2014) Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. Biotechnol Biofuels 7: art. 143. doi:10.1186/s13068-014-0143-5

  • Neumüller KG, Carvalho de Souza A, Rijn JHJ, Streekstra H, Gruppen H, Schols HA (2015) Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides. Biotechnol Biofuels 8: art. 7. doi:10.1186/s13068-014-0187-6

  • Poidevin L, Berrin J-G, Bennati-Granier C, Levasseur A, Herpoël-Gimbert I, Chevret D, Coutinho PM, Henrissat B, Heiss-Blanquet S, Record E (2014) Comparative analyses of Podospora anserina secretomes reveal a large array of lignocellulose-active enzymes. Appl Microbiol Biotechnol 98:7457–7469. doi:10.1007/s00253-014-5698-3

    Article  CAS  PubMed  Google Scholar 

  • Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424. doi:10.1007/BF00268207

    Article  CAS  Google Scholar 

  • Puchart V, Biely P (2015) Redistribution of acetyl groups on the non-reducing end xylopyranosyl residues and their removal by xylan deacetylases. Appl Microbiol Biotechnol 99:3865–3873. doi:10.1007/s00253-014-6160-2

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uhliariková I, Vršanská M, McCleary BV, Biely P (2013) Positional specificity of acetylxylan esterases on natural polysaccharide: an NMR study. Biochim Biophys Acta 1830:3365–3372. doi:10.1016/j.bbagen.2013.01.011

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Mrs. Mária Cziszárová and Dr. Iveta Uhliariková are gratefully acknowledged for their excellent technical assistance and NMR spectroscopy measurements. This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0602-12 and by Scientific Grant Agency under the contract No. 2/0037/14. This work was also supported by the Research and Development Operation Programme funded by the European Regional Development Fund (ITMS 26220120054) and by SP Grant 2003SP200280203. This study was also funded by the French National Research Agency (A*MIDEX project ANR-11-IDEX-0001-02; ANR FUNLOCK ANR-13-BIME-0002-01).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimír Puchart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 835 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puchart, V., Berrin, JG., Haon, M. et al. A unique CE16 acetyl esterase from Podospora anserina active on polymeric xylan. Appl Microbiol Biotechnol 99, 10515–10526 (2015). https://doi.org/10.1007/s00253-015-6934-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6934-1

Keywords

Navigation