Skip to main content
Log in

Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Slow sand filtration (SSF) is an effective low-tech water treatment method for pathogen and particle removal. Yet despite its application for centuries, it has been uncertain to which extent pathogenic microbes are removed by mechanical filtration or due to ecological interactions such as grazing and competition for nutrients. In this study, we quantified the removal of bacterial faecal indicators, Escherichia coli and Enterococcus faecalis, from secondary effluent of a wastewater treatment plant and analysed the microbial community composition in compartments of laboratory model SSF columns. The columns were packed with different sand grain sizes and eliminated 1.6–2.3 log units of faecal indicators, which translated into effluents of bathing water quality according to the EU directive (<500 colony forming units of E. coli per 100 ml) for columns with small grain size. Most of that removal occurred in the upper filter area, the Schmutzdecke. Within that same zone, total bacterial numbers increased however, thus suggesting a specific elimination of the faecal indicators. The analysis of the microbial communities also revealed that some taxa were removed more from the wastewater than others. These results accentuate the contribution of biological mechanisms to water purification in SSF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdo Z, Schuette UM, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphism of 16S rDNA genes. Environ Microbiol 8:929–938

    Article  PubMed  Google Scholar 

  • Adin A (2003) Slow granular filtration for water reuse. Water Sci Technol Water Supply 3:123–130

    CAS  Google Scholar 

  • Al Salem SS, Abouzaid H (2006) Wastewater reuse for agriculture: regional health perspective. East Mediterr Health J 12:446–458

    CAS  PubMed  Google Scholar 

  • Ausland G, Stevik TK, Hanssen JF, Køhler JC, Jenssen PD (2002) Intermittent filtration of wastewater-removal of faecal coliforms and faecal streptococci. Water Res 36:3507–3516

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Dizer H, Graeber I, Rosenwinkel KH, López-Pila JM (2011) Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration. Water Res 45:439–452

    Article  CAS  PubMed  Google Scholar 

  • Bomo A-M, Stevik TK, Hovi I, Hanssen JF (2004) Bacterial removal and protozoan grazing in biological sand filters. J Environ Qual 33:1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Chabaud S, Andres Y, Lakel A, Le Cloirec P (2006) Bacteria removal in septic effluent: influence of biofilm and protozoa. Water Res 40:3109–3114

    Article  CAS  PubMed  Google Scholar 

  • Corapcioglu MY, Haridas A (1984) Transport and fate of microorganisms in porous media: a theoretical investigation. J Hydrol 72:149–169

    Article  Google Scholar 

  • Culman SW, Bukowski R, Gauch HG, Cadillo-Quiroz H, Buckley DH (2009) T-REX: software for the processing and analysis of T-RFLP data. BMC Bioinf 10:171

    Article  Google Scholar 

  • Devadhanam Joubert E, Pillay B (2008) Visualisation of the microbial colonisation of a slow sand filter using an Environmental Scanning Electron Microscope. Electron J Biotechnol 11:119–125

    Article  Google Scholar 

  • DIN 18123 (1996) Bestimmung der Korngrößenverteilung. Beuth, Berlin, Germany

  • Elliott MA, Stauber CE, Koksal F, DiGiano FA, Sobsey MD (2008) Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res 42:2662–2670

    Article  CAS  PubMed  Google Scholar 

  • EU (2006) Directive 2006/7/EC of the European Parliament and of the council concerning the management of bathing water quality. <http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0007> 24 October 2014

  • Euringer K, Lueders T (2008) An optimised PCR/T-RFLP fingerprinting approach for the investigation of protistan communities in groundwater environments. J Microbiol Methods 75:262–268

    Article  CAS  PubMed  Google Scholar 

  • Farooq S, Alyousef AK (1993) Slow sand filtration of secondary effluent. J Environ Eng 119:615–630

    Article  CAS  Google Scholar 

  • Glücksman E, Bell T, Griffiths RI, Bass D (2010) Closely related protist strains have different grazing impact on natural bacterial communities. Environ Microbiol 12:3105–3113

    Article  PubMed  Google Scholar 

  • Haig SJ, Quince C, Davies RL, Dorea CC, Collins G (2014) Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res 61:141–151

    Article  CAS  PubMed  Google Scholar 

  • Haig SJ, Schirmer M, D’Amore R, Gibbs J, Davies RL, Collins G, Quince C (2015) Stable-isotope probing and metagenomics reveal predation by protozoa drives E. coli removal in slow sand filters. ISME 9:797–808

    Article  CAS  Google Scholar 

  • Hendricks D (1991) Manual of design for slow sand filtration, AWWA Research Foundation and American Water Works Association, published by the AWWA, Denver, CO, 247 ps

  • Hespanhol I, Prost AME (1994) WHO guidelines and national standards for reuse and water quality. Water Res 28:119–124

    Article  CAS  Google Scholar 

  • Hijnen W, Schijven J, Bonne P, Visser A, Medema GJ (2004) Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci Technol 50:147–154

    CAS  PubMed  Google Scholar 

  • Hill TC, Walsh KA, Harris JA, Moffett BF (2003) Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol 43:1–11

    Article  CAS  PubMed  Google Scholar 

  • Howe AT, Bass D, Vickerman K, Chao EE, Cavalier-Smith T (2009) Phylogeny, taxonomy, and astounding genetic diversity of Glissomonadida ord. nov., the dominant gliding zooflagellates in soil (Protozoa: Cercozoa). Protist 160:159–189

  • Jones MD, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    Article  CAS  PubMed  Google Scholar 

  • Langenbach K, Kuschk P, Horn H, Kästner M (2009) Slow sand filtration of secondary clarifier effluent for wastewater reuse. Environ Sci Technol 43:5896–5901

    Article  CAS  PubMed  Google Scholar 

  • Langenbach K, Kuschk P, Horn H, Kästner M (2010) Modeling of slow sand filtration for disinfection of secondary clarifier effluent. Water Res 44:159–166

    Article  CAS  PubMed  Google Scholar 

  • Logsdon GS, Kohne R, Abel S, La Bonde S (2002) Slow sand filtration for small water systems. J Environ Eng Sci 1:339–348

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, Buchner A, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1–9

    Article  Google Scholar 

  • Miyoshi T, Iwatsuki T, Naganuma T (2005) Phylogenetic characterization of 16S rRNA gene clones from deep-groundwater microorganisms that pass through 0.2-micrometer-pore-size filters. Appl Environ Microbiol 71:1084–1088

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mwabi JK, Mamba BB, Momba MN (2012) Removal of Escherichia coli and faecal coliforms from surface water and groundwater by household water treatment devices/systems: a sustainable solution for improving water quality in rural communities of the Southern African development community region. Int J Environ Res Public 9:139–170

    Article  CAS  Google Scholar 

  • Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  • Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tat-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sadiq R, Husain T, Al-Zahrani AM, Sheikh AK, Farooq S (2003) Secondary effluent treatment by slow sand filters: performance and risk analysis. Water Air Soil Pollut 143:41–63

    Article  CAS  Google Scholar 

  • Schijven JF, de Bruin HAM, Hassanizadeh SM, de Roda Husman AM (2003) Bacteriophages and Clostridium spores as indicator organisms for removal of pathogens by passage through saturated dune sand. Water Res 37:2186–2194

    Article  CAS  PubMed  Google Scholar 

  • Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marinas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  PubMed  Google Scholar 

  • Stevik TK, Kari AA, Ausland G, Hanssen JF (2004) Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review. Water Res 38:1355–1367

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Bond WJ, Griffen DM (1992) Transport of bacteria during unsteady unsaturated soil water flow. Soil Sci Soc Am J 56:1331–1340

    Article  Google Scholar 

  • Timms S, Slade JS, Fricker CR (1995) Removal of Cryptosporidium by slow sand filtration. Water Sci Technol 31:81–84

    Article  Google Scholar 

  • Verni F, Gualtieri P (1997) Feeding behaviour in ciliated protists. Micron 28:487–504

    Article  Google Scholar 

  • Wakelin S, Page D, Dillon P, Pavelic P, Abell GCJ, Gregg AL, Brodie E, DeSantis TZ, Goldfarb KC, Anderson G (2011) Microbial community structure of a slow sand filter schmutzdecke: a phylogenetic snapshot based on rRNA sequence analysis. Water Sci Technol Water Supply 11:426–436

    Article  CAS  Google Scholar 

  • Wand H, Vacca G, Kuschk P, Krüger M, Kästner M (2007) Removal of bacteria by filtration in planted and non-planted sand columns. Water Res 41:159–167

    Article  CAS  PubMed  Google Scholar 

  • WHO (2006) Guidelines for the safe use of wastewater, excreta and greywater. Volume 2: Wastewater use in agriculture. http://www.who.int/water_sanitation_health/wastewater/gsuww/en/index.html

  • Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wotton RS (2002) Water purification using sand. Hydrobiologia 469:193–201

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the great technical support of Ute Kuhlicke and Michaela Blank. Furthermore, we would like to thank three anonymous reviewers for critically reading the manuscript and suggesting many improvements.

Conflict of interest

The authors declare that they have no competing interests.

Compliance with ethical standards

Funding

This work was supported by the German Federal Ministry of Education and Research (BMBF; Grant: 02WM0847), the Foundation of German Business (sdw), the European Commission (Grant Agreement No: FP7-KBBE-2012-6-311933, WATER4CROPS) and the Helmholtz Association.

Human and animal rights and informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen A. Müller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 9791 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pfannes, K.R., Langenbach, K.M.W., Pilloni, G. et al. Selective elimination of bacterial faecal indicators in the Schmutzdecke of slow sand filtration columns. Appl Microbiol Biotechnol 99, 10323–10332 (2015). https://doi.org/10.1007/s00253-015-6882-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6882-9

Keywords

Navigation