Skip to main content
Log in

The biodegradation vs. biotransformation of fluorosubstituted aromatics

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fluoroaromatics are widely and—in recent years—increasingly used as agrochemicals, starting materials for chemical syntheses and especially pharmaceuticals. This originates from the special properties the carbon-fluorine bond is imposing on organic molecules. Hence, fluoro-substituted compounds more and more are considered to be important potential environmental contaminants. On the other hand, the microbial potentials for their transformation and mineralization have received less attention in comparison to other haloaromatics. Due to the high electronegativity of the fluorine atom, its small size, and the extraordinary strength of the C-F bond, enzymes and mechanisms known to facilitate the degradation of chloro- or bromoarenes are not necessarily equally active with fluoroaromatics. Here, we review the literature on the microbial degradation of ring and side-chain fluorinated aromatic compounds under aerobic and anaerobic conditions, with particular emphasis being placed on the mechanisms of defluorination reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adjei MD, Heinze TM, Deck J, Freeman JP, Williams AJ, Sutherland JB (2006) Transformation of the antibacterial agent norfloxacin by environmental mycobacteria. Appl Environ Microbiol 72:5790–5793. doi:10.1128/AEM.03032-05

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ali DA, Callely AG, Hayes M (1962) Ability of a Vibrio grown on Benzoate to oxidize para-Fluorobenzoate. Nature 196:194–195. doi:10.1038/196194a0

    CAS  Google Scholar 

  • Altenschmidt U, Oswald B, Fuchs G (1991) Purification and characterization of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from a denitrifying Pseudomonas sp. J Bacteriol 173:5494–5501

    PubMed Central  CAS  PubMed  Google Scholar 

  • Altenschmidt U, Oswald B, Steiner E, Herrmann H, Fuchs G (1993) New aerobic benzoate oxidation pathway via benzoyl-coenzyme A and 3-hydroxybenzoyl-coenzyme A in a denitrifying Pseudomonas sp. J Bacteriol 175:4851–4858

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amadio J, Murphy CD (2010) Biotransformation of fluorobiphenyl by Cunninghamella elegans. Appl Microbiol Biotechnol 86:345–351. doi:10.1007/s00253-009-2346-4

    CAS  PubMed  Google Scholar 

  • Amadio J, Murphy CD (2011) Production of human metabolites of the anti-cancer drug flutamide via biotransformation in Cunninghamella species. Biotechnol Lett 33:321–326. doi:10.1007/s10529-010-0425-3

    CAS  PubMed  Google Scholar 

  • Amorim CL, Carvalho MF, Afonso CM, Castro PM (2013) Biodegradation of fluoroanilines by the wild strain Labrys portucalensis. Int Biodeterior Biodegrad 80:10–15. doi:10.1016/j.ibiod.2013.02.001

    CAS  Google Scholar 

  • Amorim CL, Ferreira AC, Carvalho MF, Afonso CM, Castro PM (2014a) Mineralization of 4-fluorocinnamic acid by a Rhodococcus strain. Appl Microbiol Biotechnol 98:1893–1905. doi:10.1007/s00253-013-5149-6

    CAS  PubMed  Google Scholar 

  • Amorim CL, Moreira IS, Maia AS, Tiritan ME, Castro PM (2014b) Biodegradation of ofloxacin, norfloxacin, and ciprofloxacin as single and mixed substrates by Labrys portucalensis F11. Appl Microbiol Biotechnol 98:3181–3190. doi:10.1007/s00253-013-5333-8

    CAS  PubMed  Google Scholar 

  • Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333

    CAS  PubMed  Google Scholar 

  • Bae HS, Lee JM, Lee S (1996) Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706. FEMS Microbiol Lett 145:125–129. doi:10.1111/j.1574-6968.1996.tb08566.x

    CAS  PubMed  Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    PubMed Central  CAS  PubMed  Google Scholar 

  • Battaini G, Monzani E, Casella L, Lonardi E, Tepper AW, Canters GW, Bubacco L (2002) Tyrosinase-catalyzed oxidation of fluorophenols. J Biol Chem 277:44606–44612. doi:10.1074/jbc.M207829200

    CAS  PubMed  Google Scholar 

  • Bellinaso M, Greer CW, do Carmo Peralba M, Pêgas Henriques JA, Gaylarde CC (2003) Biodegradation of the herbicide trifluralin by bacteria isolated from soil. FEMS Microbiol Ecol 43:191–194. doi:10.1111/j.1574-6941.2003.tb01058.x

    CAS  Google Scholar 

  • Biegert T, Fuchs G (1995) Anaerobic oxidation of toluene (analogues) to benzoate (analogues) by whole cells and by cell extracts of a denitrifying Thauera sp. Arch Microbiol 163:407–417. doi:10.1007/BF00272129

    CAS  Google Scholar 

  • Biegert T, Altenschmidt U, Eckerskorn C, Fuchs G (1993) Enzymes of anaerobic metabolism of phenolic compounds. 4-hydroxybenzoate-CoA ligase from a denitrifying Pseudomonas species. Eur J Biochem 213:555–561

    CAS  PubMed  Google Scholar 

  • Biegert T, Altenschmidt U, Eckerskorn C, Fuchs G (1995) Purification and properties of benzyl alcohol dehydrogenase from a denitrifying Thauera sp. Arch Microbiol 163:418–423

    CAS  PubMed  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668. doi:10.1111/j.1432-1033.1996.0661w.x

    CAS  PubMed  Google Scholar 

  • Blasco R, Wittich R, Mallavarapu M, Timmis KN, Pieper DH (1995) From xenobiotic to antibiotic, formation of protoanemonin from 4-chlorocatechol by enzymes of the 3-oxoadipate pathway. J Biol Chem 270:29229–29235. doi:10.1074/jbc.270.49.29229

    CAS  PubMed  Google Scholar 

  • Boersma MG, Dinarieva TY, Middelhoven WJ, van Berkel WJ, Doran J, Vervoort J, Rietjens IM (1998) 19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Appl Environ Microbiol 64:1256–1263

    PubMed Central  CAS  PubMed  Google Scholar 

  • Boersma FGH, McRoberts WC, Cobb SL, Murphy CD (2004) A 19F NMR study of fluorobenzoate biodegradation by Sphingomonas sp. HB-1. FEMS Microbiol Lett 237:355–361. doi:10.1111/j.1574-6968.2004.tb09717.x

    CAS  PubMed  Google Scholar 

  • Bondar VS, Boersma MG, Golovlev EL, Vervoort J, van Berkel WJ, Finkelstein ZI, Solyanikova IP, Golovleva LA, Rietjens IM (1998) 19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species. Biodegradation 9:475–486. doi:10.1023/A:1008391906885

    CAS  PubMed  Google Scholar 

  • Bondar VS, Boersma MG, van Berkel WJ, Finkelstein ZI, Golovlev EL, Baskunov BP, Vervoort J, Golovleva LA, Rietjens IM (1999) Preferential oxidative dehalogenation upon conversion of 2-halophenols by Rhodococcus opacus 1G. FEMS Microbiol Lett 181:73–82

    CAS  PubMed  Google Scholar 

  • Bozarth GA, Funderburk HH Jr (1971) Degradation of fluometuron in sandy loam soil. Weed Sci 19:691–695

    CAS  Google Scholar 

  • Brooks SJ, Doyle EM, Hewage C, Malthouse JPG, Duetz W, O’ Connor KE (2004) Biotransformation of halophenols using crude cell extracts of Pseudomonas putida F6. Appl Microbiol Biotechnol 64:486–492. doi:10.1007/s00253-003-1488-z

    CAS  PubMed  Google Scholar 

  • Brückmann M, Blasco R, Timmis KN, Pieper DH (1998) Detoxification of protoanemonin by dienelactone hydrolase. J Bacteriol 180:400–402

    PubMed Central  PubMed  Google Scholar 

  • Cain RB, Tranter EK, Darrah JA (1968) The utilization of some halogenated aromatic acids by Nocardia. Oxidation and metabolism. Biochem J 106:211–227

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho MF, Alves CCT, Ferreira MIM, De Marco P, Castro PML (2002) Isolation and initial characterization of a bacterial consortium able to mineralize fluorobenzene. Appl Environ Microbiol 68:102–105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho MF, Ferreira Jorge R, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298. doi:10.1111/j.1462-2920.2004.00714.x

    CAS  PubMed  Google Scholar 

  • Carvalho MF, Ferreira MIM, Moreira IS, Castro PML, Janssen DB (2006) Degradation of fluorobenzene by Rhizobiales strain F11 via ortho cleavage of 4-fluorocatechol and catechol. Appl Environ Microbiol 72:7413–7417. doi:10.1128/AEM.01162-06

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carvalho MF, De Marco P, Duque AF, Pacheco CC, Janssen DB, Castro PML (2008) Labrys portucalensis sp. nov., a fluorobenzene-degrading bacterium isolated from an industrially contaminated sediment in northern Portugal. Int J Syst Evol Microbiol 58:692–698. doi:10.1099/ijs.0.65472-0

    CAS  PubMed  Google Scholar 

  • Cass AE, Ribbons DW, Rossiter JT, Williams SR (1987) Biotransformation of aromatic compounds monitoring fluorinated analogues by NMR. FEBS Lett 220:353–357. doi:10.1016/0014-5793(87)80845-1

    CAS  PubMed  Google Scholar 

  • Cerniglia CE, Miller DW, Yang SK, Freeman JP (1984) Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene. Appl Environ Microbiol 48:294–300

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chaojie Z, Qi Z, Ling C, Yuan Y, Hui Y (2007a) Degradation of mono-fluorophenols by an acclimated activated sludge. Biodegradation 18:51–61. doi:10.1007/s10532-005-9035-5

    PubMed  Google Scholar 

  • Chaojie Z, Qi Z, Ling C, Zhichao W, Bin X (2007b) Biodegradation of meta-fluorophenol by an acclimated activated sludge. J Hazard Mater 141:295–300. doi:10.1016/j.jhazmat.2006.07.002

    PubMed  Google Scholar 

  • Cheah E, Ashley GW, Gary J, Ollis D (1993) Catalysis by dienelactone hydrolase: a variation on the protease mechanism. Proteins 16:64–78. doi:10.1002/prot.340160108

    CAS  PubMed  Google Scholar 

  • Chen S, Dong YH, Chang C, Deng Y, Zhang XF, Zhong G, Song H, Hu M, Zhang L (2013) Characterization of a novel cyfluthrin-degrading bacterial strain Brevibacterium aureum and its biochemical degradation pathway. Bioresour Technol 132:16–23. doi:10.1016/j.biortech.2013.01.002

    CAS  PubMed  Google Scholar 

  • Clarke KF, Callely AG, Livingstone A, Fewson CA (1975) Metabolism of monofluorobenzoates by Acinetobacter calcoaceticus N.C.I.B. 8250. Formation of monofluorocatechols. Biochim Biophys Acta 404:169–179

    CAS  PubMed  Google Scholar 

  • Coulombel L, Nolan LC, Nikodinovic J, Doyle EM, O’Connor KE (2011) Biotransformation of 4-halophenols to 4-halocatechols using Escherichia coli expressing 4-hydroxyphenylacetate 3-hydroxylase. Appl Microbiol Biotechnol 89:1867–1875. doi:10.1007/s00253-010-2969-5

    CAS  PubMed  Google Scholar 

  • Crawford RL, Olson PE, Frick TD (1979) Catabolism of 5-chlorosalicylate by a Bacillus isolated from the Mississippi River. Appl Environ Microbiol 38:379–384

    PubMed Central  CAS  PubMed  Google Scholar 

  • Creaser C, dos Santos LF, Lamarca DG, New A, Wolff J (2002) Biodegradation studies of 4-fluorobenzoic acid and 4-fluorocinnamic acid: an evaluation of membrane inlet mass spectrometry as an alternative to high performance liquid chromatography and ion chromatography. Anal Chim Acta 454:137–145. doi:10.1016/S0003-2670(01)01514-8

    CAS  Google Scholar 

  • Dagley S, Geary PJ, Wood JM (1968) The metabolism of protocatechuate by Pseudomonas testosteroni. Biochem J 109:559–568. doi:10.1042/bj1090559

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dennis DA, Chapman PJ, Dagley S (1973) Degradation of protocatechuate in Pseudomonas testosteroni by a pathway involving oxidation of the product of meta-fission. J Bacteriol 113:521–523

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dobslaw D, Engesser K (2012) Degradation of 2-chlorotoluene by Rhodococcus sp. OCT 10. Appl Microbiol Biotechnol 93:2205–2214. doi:10.1007/s00253-011-3543-5

    CAS  PubMed  Google Scholar 

  • Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Biochem J 174:85–94

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dorn E, Knackmuss HJ (1978b) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem J 174:73–84

    PubMed Central  CAS  PubMed  Google Scholar 

  • Drzyzga O, Jannsen S, Blotevogel K (1994) Mineralization of monofluorobenzoate by a diculture under sulfate-reducing conditions. FEMS Microbiol Lett 116:215–219. doi:10.1111/j.1574-6968.1994.tb06703.x

    CAS  PubMed  Google Scholar 

  • Duque AF, Bessa VS, Carvalho MF, Castro PM (2011) Bioaugmentation of a rotating biological contactor for degradation of 2-fluorophenol. Bioresour Technol 102:9300–9303. doi:10.1016/j.biortech.2011.07.003

    CAS  PubMed  Google Scholar 

  • Duque AF, Hasan SA, Bessa VS, Carvalho MF, Samin G, Janssen DB, Castro PML (2012) Isolation and characterization of a Rhodococcus strain able to degrade 2-fluorophenol. Appl Microbiol Biotechnol 95:511–520. doi:10.1007/s00253-011-3696-2

    CAS  PubMed  Google Scholar 

  • Duque AF, Bessa VS, Castro PM (2014) Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater. J Ind Microbiol Biotechnol 41:97–104. doi:10.1007/s10295-013-1381-4

    CAS  PubMed  Google Scholar 

  • Eaton RW (2001) Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol 183:3689–3703. doi:10.1128/JB.183.12.3689-3703.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Emanuelsson MAE, Osuna MB, Ferreira Jorge RM, Castro PML (2009) Isolation of a Xanthobacter sp. degrading dichloromethane and characterization of the gene involved in the degradation. Biodegradation 20:235–244. doi:10.1007/s10532-008-9216-0

    CAS  PubMed  Google Scholar 

  • Engesser KH (1982) Der Einfluss der Trifluormethylgruppe auf die biologische Abbaubarkeit von Aromaten. Dissertation, University of Göttingen

  • Engesser KH, Fischer P (1991) Degradation of haloaromatic compounds. In: Robards AW, Betts WB (eds) Biodegradation. Springer, London, pp 15–54

    Google Scholar 

  • Engesser KH, Schulte P (1989) Degradation of 2-bromo-, 2-chloro- and 2-fluorobenzoate by Pseudomonas putida CLB 250. FEMS Microbiol Lett 60:143–147

    CAS  Google Scholar 

  • Engesser KH, Schmidt E, Knackmuss HJ (1980) Adaptation of Alcaligenes eutrophus B9 and Pseudomonas sp. B13 to 2-fluorobenzoate as growth substrate. Appl Environ Microbiol 39:68–73

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engesser KH, Cain RB, Knackmuss HJ (1988a) Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 3-trifluoromethyl(TFM)-benzoate by Pseudomonas putida (arvilla) mt-2 and Rhodococcus rubropertinctus N657. Arch Microbiol 149:188–197

    CAS  PubMed  Google Scholar 

  • Engesser KH, Rubio MA, Ribbons DW (1988b) Bacterial metabolism of side chain fluorinated aromatics: cometabolism of 4-trifluoromethyl(TFM)-benzoate by 4-isopropylbenzoate grown Pseudomonas putida JT strains. Arch Microbiol 149:198–206

    CAS  PubMed  Google Scholar 

  • Engesser KH, Auling G, Busse J, Knackmuss H (1990a) 3-Fluorobenzoate enriched bacterial strain FLB 300 degrades benzoate and all three isomeric monofluorobenzoates. Arch Microbiol 153:193–199

    CAS  Google Scholar 

  • Engesser KH, Rubio MA, Knackmuss HJ (1990b) Bacterial metabolism of side-chain-fluorinated aromatics: unproductive meta-cleavage of 3-trifluoromethylcatechol. Appl Microbiol Biotechnol 32(5):600–8. doi:10.1007/BF00173734

    CAS  PubMed  Google Scholar 

  • Erb RW, Timmis KN, Pieper DH (1998) Characterization of a gene cluster from Ralstonia eutropha JMP134 encoding metabolism of 4-methylmuconolactone. Gene 206:53–62. doi:10.1016/S0378-1119(97)00565-9

    CAS  PubMed  Google Scholar 

  • Ferreira MIM, Marchesi JR, Janssen DB (2008) Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1. Appl Microbiol Biotechnol 78:709–717. doi:10.1007/s00253-008-1343-3

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ferreira MIM, Iida T, Hasan SA, Nakamura K, Fraaije MW, Janssen DB, Kudo T (2009) Analysis of two gene clusters involved in the degradation of 4-fluorophenol by Arthrobacter sp. Strain IF1. Appl Environ Microbiol 75:7767–7773. doi:10.1128/AEM.00171-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fetzner S, Müller R, Lingens F (1992) Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS. J Bacteriol 174:279–290

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fewson CA, Kennedy SI, Livingstone A (1968) Metabolism of monofluorobenzoates by Bacterium N.C.I.B. 8250. Biochem J 109:6P–7P

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein ZI, Baskunov BP, Boersma MG, Vervoort J, Golovlev EL, van Berkel WJH, Golovleva LA, Rietjens IMCM (2000) Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols in Rhodococcus opacus 1cp. Appl Environ Microbiol 66:2148–2153. doi:10.1128/AEM.66.5.2148-2153.2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Finkelstein ZI, Baskunov BP, Rietjens IM, Boersma MG, Vervoort J, Golovleva LA (2001) Transformation of the insecticide teflubenzuron by microorganisms. J Environ Sci Health B 36:559–567. doi:10.1081/PFC-100106185

    CAS  PubMed  Google Scholar 

  • Franco AR, Ferreira AC, Castro PM (2014) Co-metabolic degradation of mono-fluorophenols by the ectomycorrhizal fungi Pisolithus tinctorius. Chemosphere 111:260–265. doi:10.1016/j.chemosphere.2014.03.094

    CAS  PubMed  Google Scholar 

  • Freitas dos Santos LM, Spicq A, New AP, Lo Biundo G, Wolff J, Edwards A (2001) Aerobic biotransformation of 4-fluorocinnamic acid to 4-fluorobenzoic acid. Biodegradation 12:23–29. doi:10.1023/A:1011973824171

    CAS  Google Scholar 

  • Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds—from one strategy to four. Nat Rev Microbiol 9:803–816. doi:10.1038/nrmicro2652

    CAS  PubMed  Google Scholar 

  • Gaal A, Neujahr HY (1980) cis,cis-Muconate cyclase from Trichosporon cutaneum. Biochem J 191:37–43

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gibson DT, Koch JR, Schuld CL, Kallio RE (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802. doi:10.1021/bi00851a003

    CAS  PubMed  Google Scholar 

  • Göbel M, Kranz OH, Kaschabek SR, Schmidt E, Pieper DH, Reineke W (2004) Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters. Arch Microbiol 182:147–156. doi:10.1007/s00203-004-0681-5

    PubMed  Google Scholar 

  • Goldman P (1965) The enzymatic cleavage of the carbon-fluorine bond in fluoroacetate. J Biol Chem 240:3434–3438

    CAS  PubMed  Google Scholar 

  • Goldman P, Milne G, Pignataro MT (1967) Fluorine containing metabolites formed from 2-fluorobenzoic acid by Pseudomonas species. Arch Biochem Biophys 118:178–184. doi:10.1016/0003-9861(67)90295-0

    CAS  Google Scholar 

  • Green N, Meharg A, Till C, Troke J, Nicholson J (1999a) Degradation of 4-fluorobiphenyl in soil investigated by 19F NMR spectroscopy and 14C radiolabelling analysis. Chemosphere 38:1085–1101. doi:10.1016/S0045-6535(98)00351-8

    CAS  PubMed  Google Scholar 

  • Green NA, Meharg AA, Till C, Troke J, Nicholson JK (1999b) Degradation of 4-fluorobiphenyl by mycorrhizal fungi as determined by (19)F nuclear magnetic resonance spectroscopy and (14)C radiolabelling analysis. Appl Environ Microbiol 65:4021–4027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gribble GW (2002) Naturally occurring organofluorines. In: Neilson AH (ed) Organofluorines. Springer-Verlag, Berlin, pp 121–136

    Google Scholar 

  • Gros M, Cruz-Morato C, Marco-Urrea E, Longrée P, Singer H, Sarrà M, Hollender J, Vicent T, Rodriguez-Mozaz S, Barceló D (2014) Biodegradation of the X-ray contrast agent iopromide and the fluoroquinolone antibiotic ofloxacin by the white rot fungus Trametes versicolor in hospital wastewaters and identification of degradation products. Water Res 60:228–241. doi:10.1016/j.watres.2014.04.042

    CAS  PubMed  Google Scholar 

  • Guzik U, Hupert-Kocurek K, Wojcieszysk D (2013) Intradiol dioxygenases — The key enzymes in xenobiotics degradation. In: Chamy R (ed) Biodegradation of hazardous and special products. InTech, Rijeka, pp 129–153

    Google Scholar 

  • Häggblom M, Knight V, Kerkhof L (2000) Anaerobic decomposition of halogenated aromatic compounds. Environ Pollut 107:199–207. doi:10.1016/S0269-7491(99)00138-4

    PubMed  Google Scholar 

  • Harayama S, Rekik M (1990) The meta cleavage operon of TOL degradative plasmid pWW0 comprises 13 genes. Mol Gen Genet 221:113–120

    CAS  PubMed  Google Scholar 

  • Harper DB, Blakley ER (1971a) The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. I. Isolation and identification of intermediates in degradation. Can J Microbiol 17:635–644. doi:10.1139/m71-103

    CAS  PubMed  Google Scholar 

  • Harper DB, Blakley ER (1971b) The metabolism of p-fluorobenzoic acid by a Pseudomonas sp. Can J Microbiol 17:1015–1023

    CAS  PubMed  Google Scholar 

  • Harper DB, Blakley ER (1971c) The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. II. The degradative pathway. Can J Microbiol 17:645–650

    CAS  PubMed  Google Scholar 

  • Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50:553–590. doi:10.1146/annurev.micro.50.1.553

    CAS  PubMed  Google Scholar 

  • Hasan SA, Ferreira MIM, Koetsier MJ, Arif MI, Janssen DB (2011) Complete biodegradation of 4-fluorocinnamic acid by a consortium comprising Arthrobacter sp. Strain G1 and Ralstonia sp. Strain H1. Appl Environ Microbiol 77:572–579. doi:10.1128/AEM.00393-10

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hatta T, Fujii E, Takizawa N (2012) Analysis of two gene clusters involved in 2,4,6-trichlorophenol degradation by Ralstonia pickettii DTP0602. Biosci Biotechnol Biochem 76:892–899. doi:10.1271/bbb.110843

    CAS  PubMed  Google Scholar 

  • Heiss G, Müller C, Altenbuchner J, Stolz A (1997) Analysis of a new dimeric extradiol dioxygenase from a naphthalenesulfonate-degrading sphingomonad. Microbiology (Reading, Engl) 143(Pt 5):1691–1699

    CAS  Google Scholar 

  • Herath W, Khan IA (2010) Microbial metabolism. Part 11. Metabolites of flutamide. Chem Pharm Bull 58:562–564. doi:10.1248/cpb.58.562

    CAS  PubMed  Google Scholar 

  • Hickey WJ, Focht DD (1990) Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Appl Environ Microbiol 56:3842–3850

    PubMed Central  CAS  PubMed  Google Scholar 

  • Higson FK, Focht DD (1990) Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa. Appl Environ Microbiol 56:1615–1619

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hintner J, Reemtsma T, Stolz A (2004) Biochemical and molecular characterization of a ring fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans. J Biol Chem 279:37250–37260. doi:10.1074/jbc.M313500200

    CAS  PubMed  Google Scholar 

  • Hiyama T (2000) Organofluorine compounds. Chemistry and applications. Springer, Berlin

    Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34:163–172. doi:10.1002/jobm.3620340306

    CAS  PubMed  Google Scholar 

  • Hongsawat P, Vangnai AS (2011) Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. J Hazard Mater 186:1300–1307. doi:10.1016/j.jhazmat.2010.12.002

    CAS  PubMed  Google Scholar 

  • Hoskeri RS, Mulla SI, Shouche YS, Ninnekar HZ (2011) Biodegradation of 4-chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC. Biodegradation 22:509–516. doi:10.1007/s10532-010-9423-3

    CAS  PubMed  Google Scholar 

  • Hu GP, Zhao Y, Song FQ, Liu B, Vasseur L, Douglas C, You MS (2014) Isolation, identification and cyfluthrin-degrading potential of a novel Lysinibacillus sphaericus strain, FLQ-11-1. Res Microbiol 165:110–118. doi:10.1016/j.resmic.2013.11.003

    CAS  PubMed  Google Scholar 

  • Hughes D, Clark BR, Murphy CD (2011) Biodegradation of polyfluorinated biphenyl in bacteria. Biodegradation 22:741–749. doi:10.1007/s10532-010-9411-7

    CAS  PubMed  Google Scholar 

  • Husain M, Entsch B, Ballou DP, Massey V, Chapman PJ (1980) Fluoride elimination from substrates in hydroxylation reactions catalyzed by p-hydroxybenzoate hydroxylase. J Biol Chem 255:4189–4197

    CAS  PubMed  Google Scholar 

  • Karl W, Schneider J, Wetzstein H (2006) Outlines of an "exploding" network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum. Appl Microbiol Biotechnol 71:101–113. doi:10.1007/s00253-005-0177-5

    CAS  PubMed  Google Scholar 

  • Karns JS, Kilbane JJ, Duttagupta S, Chakrabarty AM (1983) Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid-degrading Pseudomonas cepacia. Appl Environ Microbiol 46:1176–1181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaschabek SR, Reineke W (1995) Maleylacetate reductase of Pseudomonas sp. strain B13: specificity of substrate conversion and halide elimination. J Bacteriol 177:320–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaschabek SR, Kasberg T, Müller D, Mars AE, Janssen DB, Reineke W (1998) Degradation of chloroaromatics: purification and characterization of a novel type of chlorocatechol 2,3-dioxygenase of Pseudomonas putida GJ31. J Bacteriol 180:296–302

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kersten PJ, Chapman PJ, Dagley S (1985) Enzymatic release of halogens or methanol from some substituted protocatechuic acids. J Bacteriol 162:693–697

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kieltsch I (2008) Elektrophile Trifluormethylierung—Anwendung von hypervalenten Iodverbindungen. Dissertation, ETH Zürich

  • Kim E, Jeon J, Kim Y, Murugesan K, Chang Y (2010) Mineralization and transformation of monofluorophenols by Pseudonocardia benzenivorans. Appl Microbiol Biotechnol 87:1569–1577. doi:10.1007/s00253-010-2647-7

    CAS  PubMed  Google Scholar 

  • Kim D, Heinze TM, Kim B, Schnackenberg LK, Woodling KA, Sutherland JB (2011) Modification of norfloxacin by a Microbacterium sp. strain isolated from a wastewater treatment plant. Appl Environ Microbiol 77:6100–6108. doi:10.1128/AEM.00545-11

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kodama N, Takenaka S, Murakami S, Shinke R, Aoki K (1997) Production of methyl, dimethyl, ethyl, chloro-, fluoro-, and hydroxyl derivatives of catechol from thirteen aromatic amines by the transpositional mutant B-9 of the aniline-assimilating Pseudomonas species AW-2. J Ferment Bioeng 84:232–235. doi:10.1016/S0922-338X(97)82060-0

    CAS  Google Scholar 

  • Kozlovsky SA, Zaitsev GM, Kunc F, Gabriel J, Boronin AM (1993) Degradation of 2-chlorobenzoic and 2,5-dichlorobenzoic acids in pure culture by Pseudomonas stutzeri. Folia Microbiol 38:371–375. doi:10.1007/BF02898758

    CAS  Google Scholar 

  • Kramer C, Kreisel G, Fahr K, Kassbohrer J, Schlosser D (2004) Degradation of 2-fluorophenol by the brown-rot fungus Gloeophyllum striatum. Evidence for the involvement of extracellular Fenton chemistry. Appl Microbiol Biotechnol 64:387–395. doi:10.1007/s00253-003-1445-x

    CAS  PubMed  Google Scholar 

  • Kuntze K, Kiefer P, Baumann S, Seifert J, von Bergen M, Vorholt JA, Boll M (2011) Enzymes involved in the anaerobic degradation of meta-substituted halobenzoates. Mol Microbiol 82:758–769. doi:10.1111/j.1365-2958.2011.07856.x

    CAS  PubMed  Google Scholar 

  • Kurihara T, Yamauchi T, Ichiyama S, Takahata H, Esaki N (2003) Purification, characterization, and gene cloning of a novel fluoroacetate dehalogenase from Burkholderia sp. FA1. J Mol Catal B Enzym 23:347–355. doi:10.1016/S1381-1177(03)00098-5

    CAS  Google Scholar 

  • Laempe D, Jahn M, Breese K, Schägger H, Fuchs G (2001) Anaerobic metabolism of 3-hydroxybenzoate by the denitrifying bacterium Thauera aromatica. J Bacteriol 183:968–979. doi:10.1128/JB.183.3.968-979.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Löffler F, Lingens F, Müller R (1995) Dehalogenation of 4-chlorobenzoate. Biodegradation 6:203–212. doi:10.1007/BF00700458

    PubMed  Google Scholar 

  • Londry KL, Fedorak PM (1993) Fluorophenols and 3-fluorobenzoate in phenol-degrading methanogenic cultures. Arch Microbiol 160:137–143. doi:10.1007/BF00288716

    CAS  Google Scholar 

  • Maeda T, Okamura D, Yokoo M, Yamashita E, Ogawa HI (2007) Fluorine elimination from 4-fluorobenzyl alcohol by Pseudomonas spp. J Environ Biotechnol 7:45–53

    Google Scholar 

  • Maia AS, Ribeiro AR, Amorim CL, Barreiro JC, Cass QB, Castro PM, Tiritan ME (2014) Degradation of fluoroquinolone antibiotics and identification of metabolites/transformation products by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1333:87–98. doi:10.1016/j.chroma.2014.01.069

    CAS  PubMed  Google Scholar 

  • Mandal K, Singh B, Jariyal M, Gupta VK (2013) Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicol Environ Saf 93:87–92. doi:10.1016/j.ecoenv.2013.04.001

    CAS  PubMed  Google Scholar 

  • Mansy AER, El-Bestawy E (2002) Toxicity and biodegradation of fluometuron by selected cyanobacterial species. World J Microbiol Biotechnol 18:125–131. doi:10.1023/A:1014490811121

    CAS  Google Scholar 

  • Marr J, Kremer S, Sterner O, Anke H (1996) Transformation and mineralization of halophenols by Penicillium simplicissimum SK9117. Biodegradation 7:165–171. doi:10.1007/BF00114628

    CAS  PubMed  Google Scholar 

  • Mars AE, Kasberg T, Kaschabek SR, van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206–4209

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin RE, Baker PB, Ribbons DW (1987) Biotransformations of fluoroaromatic compounds: accumulation of hydroxylated products from 3-fluorophthalic acid using mutant strains of Pseudomonas testosteroni. Biocatal Biotransfor 1:37–46. doi:10.3109/10242428709040129

    CAS  Google Scholar 

  • Mazur P, Pieken WA, Budihas SR, Williams SE, Wong S, Kozarich JW (1994) Cis,cis-muconate lactonizing enzyme from Trichosporon cutaneum: evidence for a novel class of cycloisomerases in eucaryotes. Biochemistry 33:1961–1970. doi:10.1021/bi00173a045

    CAS  PubMed  Google Scholar 

  • Mc Cullar MV, Koh S, Focht DD (2002) The use of mutants to discern the degradation pathway of 3,4'-dichlorobiphenyl in Pseudomonas acidovorans M3GY. FEMS Microbiol Ecol 42:81–87. doi:10.1111/j.1574-6941.2002.tb00997.x

    CAS  PubMed  Google Scholar 

  • Mechichi T, Stackebrandt E, Gad'on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35. doi:10.1007/s00203-002-0422-6

    CAS  PubMed  Google Scholar 

  • Meckenstock RU, Morasch B, Griebler C, Richnow HH (2004) Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated acquifers. J Contam Hydrol 75:215–255. doi:10.1016/j.jconhyd.2004.06.003

    CAS  PubMed  Google Scholar 

  • Milne GW, Goldman P, Holtzman JL (1968) The metabolism of 2-fluorobenzoic acid. II. Studies with 18O2. J Biol Chem 243:5374–5376

    CAS  PubMed  Google Scholar 

  • Misiak K, Casey E, Murphy CD (2011) Factors influencing 4-fluorobenzoate degradation in biofilm cultures of Pseudomonas knackmussii B13. Water Res 45:3512–3520. doi:10.1016/j.watres.2011.04.020

    CAS  PubMed  Google Scholar 

  • Moonen MJH, Rietjens IMCM, van Berkel WJH (2001) 19F NMR study on the biological Baeyer-Villiger oxidation of acetophenones. J Ind Microbiol Biotechnol 26:35–42. doi:10.1038/sj.jim.7000071

    CAS  Google Scholar 

  • Moreira IS, Amorim CL, Carvalho MF, Castro PML (2012) Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation 23:653–662. doi:10.1007/s10532-012-9541-1

    CAS  PubMed  Google Scholar 

  • Moreira IS, Amorim CL, Carvalho MF, Ferreira AC, Afonso CM, Castro PML (2013) Effect of the metals iron, copper and silver on fluorobenzene biodegradation by Labrys portucalensis. Biodegradation 24:245–255. doi:10.1007/s10532-012-9581-6

    CAS  PubMed  Google Scholar 

  • Mouttaki H, Nanny MA, McInerney MJ (2009) Metabolism of hydroxylated and fluorinated benzoates by Syntrophus aciditrophicus and detection of a fluorodiene metabolite. Appl Environ Microbiol 75:998–1004. doi:10.1128/AEM.01870-08

    PubMed Central  CAS  PubMed  Google Scholar 

  • Murphy CD (2006) Fluorophenol oxidation by a fungal chloroperoxidase. Biotechnol Lett 29:45–49. doi:10.1007/s10529-006-9207-3

    PubMed  Google Scholar 

  • Murphy CD (2010) Biodegradation and biotransformation of organofluorine compounds. Biotechnol Lett 32:351–359. doi:10.1007/s10529-009-0174-3

    CAS  PubMed  Google Scholar 

  • Murphy CD, Quirke S, Balogun O (2008) Degradation of fluorobiphenyl by Pseudomonas pseudoalcaligenes KF707. FEMS Microbiol Lett 286:45–49. doi:10.1111/j.1574-6968.2008.01243.x

    CAS  PubMed  Google Scholar 

  • Murphy CD, Clark BR, Amadio J (2009) Metabolism of fluoroorganic compounds in microorganisms: impacts for the environment and the production of fine chemicals. Appl Microbiol Biotechnol 84:617–629. doi:10.1007/s00253-009-2127-0

    CAS  PubMed  Google Scholar 

  • Natarajan R, Azerad R, Badet B, Copin E (2005) Microbial cleavage of CF bond. J Fluor Chem 126:424–435. doi:10.1016/j.jfluchem.2004.12.001

    Google Scholar 

  • Neilson AH, Allard A (2002) Degradation and transformation of organic fluorine compounds. In: Neilson AH (ed) Organofluorines. Springer-Verlag, Berlin, pp 137–202

    Google Scholar 

  • New AP, Freitas dos Santos LM, Lo Biundo G, Spicq A (2000) Analytical techniques used for monitoring the biodegradation of fluorinated compounds in waste streams from pharmaceutical production. J Chromatogr A 889:177–184. doi:10.1016/S0021-9673(00)00571-9

    CAS  PubMed  Google Scholar 

  • Nikodem P, Hecht V, Schlömann M, Pieper DH (2003) New bacterial pathway for 4- and 5-chlorosalicylate degradation via 4-chlorocatechol and maleylacetate in Pseudomonas sp. strain MT1. J Bacteriol 185:6790–6800

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nimmo WB, Wilde D, Pieter C, Verloop A (1984) The degradation of diflubenzuron and its chief metabolites in soils. Part I: hydrolytic cleavage of diflubenzuron. Pestic Sci 15:574–585. doi:10.1002/ps.2780150608

    CAS  Google Scholar 

  • Nimmo WB, Joustra KD, Willems AGM (1990) The degradation of diflubenzuron and its chief metabolites in soils. Part III. Fate of 2,6-difluorobenzoic acid. Pestic Sci 29:39–45. doi:10.1002/ps.2780290106

    CAS  Google Scholar 

  • Oltmanns RH, Müller R, Otto MK, Lingens F (1989) Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Appl Environ Microbiol 55:2499–2504

    PubMed Central  CAS  PubMed  Google Scholar 

  • Osborne RL, Raner GM, Hager LP, Dawson JH (2006) C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. J Am Chem Soc 128:1036–1037. doi:10.1021/ja056213b

    CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135. doi:10.1111/j.1574-6968.1999.tb13723.x

    CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the Fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667. doi:10.1128/AEM.66.6.2664-2667.2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001a) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144. doi:10.1038/sj/jim/7000077

    CAS  PubMed  Google Scholar 

  • Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001b) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    CAS  PubMed  Google Scholar 

  • Peelen S, Rietjens IMCM, Boersma MG, Vervoort J (1995) Conversion of phenol derivatives to hydroxylated products by phenol hydroxylase from Trichosporon cutaneum. A comparison of regioselectivity and rate of conversion with calculated molecular orbital substrate characteristics. Eur J Biochem 227:284–291. doi:10.1111/j.1432-1033.1995.tb20386.x

    CAS  PubMed  Google Scholar 

  • Peng X, Shindo K, Kanoh K, Inomata Y, Choi S, Misawa N (2005) Characterization of Sphingomonas aldehyde dehydrogenase catalyzing the conversion of various aromatic aldehydes to their carboxylic acids. Appl Microbiol Biotechnol 69:141–150. doi:10.1007/s00253-005-1962-x

    CAS  PubMed  Google Scholar 

  • Perez-Pantoja D, Donoso RA, Sanchez MA, Gonzalez B (2009) Genuine genetic redundancy in maleylacetate-reductase-encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Microbiology 155:3641–3651. doi:10.1099/mic.0.032086-0

    CAS  PubMed  Google Scholar 

  • Peters RA (1952) Croonian lecture: lethal synthesis. Proc R Soc Lond Ser B Biol Sci 139:143–170. doi:10.1098/rspb.1952.0001

  • Pieper DH, Engesser K, Don RH, Timmis KN, Knackmuss H (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methylcatechol. FEMS Microbiol Lett 29:63–67. doi:10.1111/j.1574-6968.1985.tb00836.x

    CAS  Google Scholar 

  • Pieper DH, Stadler-Fritzsche K, Knackmuss HJ, Engesser KH, Bruce NC, Cain RB (1990) Purification and characterization of 4-methylmuconolactone methylisomerase, a novel enzyme of the modified 3-oxoadipate pathway in the gram-negative bacterium Alcaligenes eutrophus JMP 134. Biochem J 271:529–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pieper DH, González B, Cámara B, Pérez-Pantoja D, Reineke W (2010) Aerobic degradation of chloroaromatics. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 839–864

    Google Scholar 

  • Prenafeta-Boldú FX, Luykx DM, Vervoort J, de Bont JA (2001) Fungal metabolism of toluene: monitoring of fluorinated analogs by (19)F nuclear magnetic resonance spectroscopy. Appl Environ Microbiol 67:1030–1034. doi:10.1128/AEM.67.3.1030-1034.2001

    PubMed Central  PubMed  Google Scholar 

  • Prieto A, Möder M, Rodil R, Adrian L, Marco-Urrea E (2011) Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products. Bioresour Technol 102:10987–10995. doi:10.1016/j.biortech.2011.08.055

    CAS  PubMed  Google Scholar 

  • Purser S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330. doi:10.1039/b610213c

    CAS  PubMed  Google Scholar 

  • Rapp P, Gabriel-Jürgens LHE (2003) Degradation of alkanes and highly chlorinated benzenes, and production of biosurfactants, by a psychrophilic Rhodococcus sp. and genetic characterization of its chlorobenzene dioxygenase. Microbiology 149:2879–2890. doi:10.1099/mic.0.26188-0

    CAS  PubMed  Google Scholar 

  • Reineke W, Knackmuss H (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Biochim Biophys Acta Gen Subj 542:412–423. doi:10.1016/0304-4165(78)90372-0

    CAS  Google Scholar 

  • Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Annu Rev Microbiol 42:263–287. doi:10.1146/annurev.mi.42.100188.001403

    CAS  PubMed  Google Scholar 

  • Reinscheid UM, Bauer MP, Müller R (1996) Biotransformation of halophenols by a thermophilic Bacillus sp. Biodegradation 7:455–461. doi:10.1007/BF00115292

    CAS  Google Scholar 

  • Reinscheid UM, Zuilhof H, Müller R, Vervoort J (1998) Biological, thermal and photochemical transformation of 2-trifluoromethylphenol. Biodegradation 9:487–499. doi:10.1023/A:1008394115008

    CAS  Google Scholar 

  • Renganathan V (1989) Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. Strain T-12. Appl Environ Microbiol 55:330–334

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renganathan V, Johnston J (1989) Catechols of novel substrates produced using the toluene ring oxidation pathway of Pseudomonas sp. strain T-12. Appl Microbiol Biotechnol 31(4):419–424. doi:10.1007/BF00257615

    CAS  Google Scholar 

  • Riegert U (2001) Eine neuartige bakterielle Dioxygenase mit der Fähigkeit zur extradiolen Spaltung von chlorierten Brenzkatechinen. Herbert Utz Verlag, Munich

    Google Scholar 

  • Rojo F, Pieper DH, Engesser KH, Knackmuss HJ, Timmis KN (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398

    CAS  PubMed  Google Scholar 

  • Rossiter JT, Williams SR, Cass AE, Ribbons DW (1987) Aromatic biotransformations 2: production of novel chiral fluorinated 3,5-cyclohexadiene-cis-1,2-diol-1-carboxylates. Tetrahedron Lett 28:5173–5174. doi:10.1016/S0040-4039(00)95620-X

    CAS  Google Scholar 

  • Saikia N, Gopal M (2004) Biodegradation of β-cyfluthrin by fungi. J Agric Food Chem 52:1220–1223. doi:10.1021/jf0349580

    CAS  PubMed  Google Scholar 

  • Saikia N, Das SK, Patel BKC, Niwas R, Singh A, Gopal M (2005) Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1. Biodegradation 16:581–589. doi:10.1007/s10532-005-0211-4

    CAS  PubMed  Google Scholar 

  • Satsuma K, Hayashi O, Sato K, Hashimura M, Kato Y (2000) Microbial degradation of herbicide pentoxazone in soils. J Pestic Sci 25:201–206

    CAS  Google Scholar 

  • Schennen U, Braun K, Knackmuss HJ (1985) Anaerobic degradation of 2-fluorobenzoate by benzoate-degrading, denitrifying bacteria. J Bacteriol 161:321–325

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schlömann M (1988) Die verschiedenen Typen der Dienlacton-Hydrolase und ihre Rolle beim bakteriellen Abbau von 4-Fluorbenzoat. Dissertation, University of Göttingen

  • Schlömann M (1994) Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 5:301–321

    PubMed  Google Scholar 

  • Schlömann M, Fischer P, Schmidt E, Knackmuss HJ (1990a) Enzymatic formation, stability, and spontaneous reactions of 4-fluoromuconolactone, a metabolite of the bacterial degradation of 4-fluorobenzoate. J Bacteriol 172:5119–5129

    PubMed Central  PubMed  Google Scholar 

  • Schlömann M, Schmidt E, Knackmuss HJ (1990b) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172:5112–5118

    PubMed Central  PubMed  Google Scholar 

  • Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt E, Knackmuss H (1984) Production of cis,cis-muconate from benzoate and 2-fluoro-cis,cis-muconate from 3-fluorobenzoate by 3-chlorobenzoate degrading bacteria. Appl Microbiol Biotechnol 20:351–355. doi:10.1007/BF00270599

    CAS  Google Scholar 

  • Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt S, Wittich RM, Erdmann D, Wilkes H, Francke W, Fortnagel P (1992) Biodegradation of diphenyl ether and its monohalogenated derivatives by Sphingomonas sp. strain SS3. Appl Environ Microbiol 58:2744–2750

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schmidt S, Fortnagel P, Wittich RM (1993) Biodegradation and transformation of 4,4'- and 2,4-dihalodiphenyl ethers by Sphingomonas sp. strain SS33. Appl Environ Microbiol 59:3931–3933

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schreiber A, Hellwig M, Dorn E, Reineke W, Knackmuss HJ (1980) Critical reactions in fluorobenzoic acid degradation by Pseudomonas sp. B13. Appl Environ Microbiol 39:58–67

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seeger M, Cámara B, Hofer B (2001) Dehalogenation, denitration, dehydroxylation, and angular attack on substituted biphenyls and related compounds by a biphenyl dioxygenase. J Bacteriol 183:3548–3555. doi:10.1128/JB.183.12.3548-3555.2001

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seibert V, Stadler-Fritzsche K, Schlömann M (1993) Purification and characterization of maleylacetate reductase from Alcaligenes eutrophus JMP134(pJP4). J Bacteriol 175:6745–6754

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seibert V, Thiel M, Hinner I, Schlömann M (2004) Characterization of a gene cluster encoding the maleylacetate reductase from Ralstonia eutropha 335T, an enzyme recruited for growth with 4-fluorobenzoate. Microbiology 150:463–472

    CAS  PubMed  Google Scholar 

  • Selesi D, Meckenstock RU (2009) Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture. FEMS Microbiol Ecol 68:86–93. doi:10.1111/j.1574-6941.2009.00652.x

    CAS  PubMed  Google Scholar 

  • Sharak Genthner BR, Townsend GT, Chapman PJ (1990) Effect of fluorinated analogues of phenol and hydroxybenzoates on the anaerobic transformation of phenol to benzoate. Biodegradation 1:65–74. doi:10.1007/BF00117052

    CAS  PubMed  Google Scholar 

  • Sistrom WR, Stanier RY (1954) The mechanism of formation of β-ketoadipic acid by bacteria. J Biol Chem 210:821–836

    CAS  PubMed  Google Scholar 

  • Solyanikova IP, Maltseva OV, Vollmer MD, Golovleva LA, Schlömann M (1995) Characterization of muconate and chloromuconate cycloisomerase from Rhodococcus erythropolis 1CP: indications for functionally convergent evolution among bacterial cycloisomerases. J Bacteriol 177:2821–2826

    PubMed Central  CAS  PubMed  Google Scholar 

  • Solyanikova IP, Moiseeva OV, Boeren S, Boersma MG, Kolomytseva MP, Vervoort J, Rietjens IMCM, Golovleva LA, van Berkel WJH (2003) Conversion of 2-fluoromuconate to cis-dienelactone by purified enzymes of Rhodococcus opacus 1cp. Appl Environ Microbiol 69:5636–5642. doi:10.1128/AEM.69.9.5636-5642.2003

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song B, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453. doi:10.1128/AEM.66.8.3446-3453.2000

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song B, Palleroni NJ, Kerkhof LJ, Häggblom MM (2001) Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. Int J Syst Evol Microbiol 51:589–602

    CAS  PubMed  Google Scholar 

  • Song E, Wang M, Shen D (2014) Isolation, identification and characterization of a novel Ralstonia sp. FD-1, capable of degrading 4-fluoroaniline. Biodegradation 25:85–94. doi:10.1007/s10532-013-9642-5

    CAS  PubMed  Google Scholar 

  • Strunk N, Engesser K (2013) Degradation of fluorobenzene and its central metabolites 3-fluorocatechol and 2-fluoromuconate by Burkholderia fungorum FLU100. Appl Microbiol Biotechnol 97:5605–5614. doi:10.1007/s00253-012-4388-2

    CAS  PubMed  Google Scholar 

  • Sun X, Man F, Pang L, Gao G, Li X, Qi X, Li F (2009) Fungal biotransformation of mosapride by Cunninghamella elegans. J Mol Catal B Enzym 59:82–89. doi:10.1016/j.molcatb.2009.01.009

    CAS  Google Scholar 

  • Taylor B (1993) Degradation of meta-trifluoromethylbenzoate by sequential microbial and photochemical treatments. FEMS Microbiol Lett 110:213–216. doi:10.1016/0378-1097(93)90468-H

    CAS  PubMed  Google Scholar 

  • Taylor BF, Hearn WL, Pincus S (1979) Metabolism of monofluoro- and monochlorobenzoates by a denitrifying bacterium. Arch Microbiol 122:301–306. doi:10.1007/BF00411295

    CAS  PubMed  Google Scholar 

  • Theodoridis G (2006) Chapter 4 Fluorine-containing agrochemicals: an overview of recent developments. In: Alain Tressaud (ed) Advances in fluorine science: fluorine and the environment agrochemicals, archaeology, green chemistry & water. Elsevier, pp 121–175

  • Travkin V, Solyanikova I, Rietjens I, Vervoort J, van Berkel W, Golovleva L (2003) Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38:121–132. doi:10.1081/PFC-120018443

    PubMed  Google Scholar 

  • Uotila JS, Kitunen VH, Saastamoinen T, Coote T, Häggblom MM, Salkinoja-Salonen MS (1992) Characterization of aromatic dehalogenases of Mycobacterium fortuitum CG-2. J Bacteriol 174:5669–5675

    PubMed Central  CAS  PubMed  Google Scholar 

  • Uotila JS, Kitunen VH, Coote T, Saastamoinen T, Salkinoja-Salonen M, Apajalahti JH (1995) Metabolism of halohydroquinones in Rhodococcus chlorophenolicus PCP-1. Biodegradation 6:119–126

    CAS  PubMed  Google Scholar 

  • van der Bolt FJ, van den Heuvel RH, Vervoort J, van Berkel WJ (1997) 19F NMR study on the regiospecificity of hydroxylation of tetrafluoro-4-hydroxybenzoate by wild-type and Y385F p-hydroxybenzoate hydroxylase: evidence for a consecutive oxygenolytic dehalogenation mechanism. Biochemistry 36:14192–14201. doi:10.1021/bi971213c

    PubMed  Google Scholar 

  • Vargas C, Song B, Camps M, Häggblom MM (2000) Anaerobic degradation of fluorinated aromatic compounds. Appl Microbiol Biotechnol 53:342–347

    CAS  PubMed  Google Scholar 

  • Vollmer MD, Hoier H, Hecht HJ, Schell U, Gröning J, Goldman A, Schlömann M (1998) Substrate specificity of and product formation by muconate cycloisomerases: an analysis of wild-type enzymes and engineered variants. Appl Environ Microbiol 64:3290–3299

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vollmer MD, Schell U, Seibert V, Lakner S, Schlömann M (1999) Substrate specificities of the chloromuconate cycloisomerases from Pseudomonas sp. B13, Ralstonia eutropha JMP134 and Pseudomonas sp. P51. Appl Microbiol Biotechnol 51:598–605

    CAS  PubMed  Google Scholar 

  • Vora KA, Singh C, Modi VV (1988) Degradation of 2-fluorobenzoate by a pseudomonad. Curr Microbiol 17:249–254. doi:10.1007/BF01571323

    CAS  Google Scholar 

  • Walker MC, Chang MCY (2014) Natural and engineered biosynthesis of fluorinated natural products. Chem Soc Rev 43:6527–6536. doi:10.1039/c4cs00027g

    CAS  PubMed  Google Scholar 

  • Wang HZ, Zuo HG, Ding YJ, Miao SS, Jiang C, Yang H (2014) Biotic and abiotic degradation of pesticide Dufulin in soils. Environ Sci Pollut Res Int 21:4331–4342. doi:10.1007/s11356-013-2380-8

    CAS  PubMed  Google Scholar 

  • Wetzstein HG, Schmeer N, Karl W (1997) Degradation of the fluoroquinolone enrofloxacin by the brown rot fungus Gloeophyllum striatum: identification of metabolites. Appl Environ Microbiol 63:4272–4281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wetzstein HG, Stadler M, Tichy HV, Dalhoff A, Karl W (1999) Degradation of ciprofloxacin by basidiomycetes and identification of metabolites generated by the brown rot fungus Gloeophyllum striatum. Appl Environ Microbiol 65:1556–1563

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wetzstein H, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100. doi:10.1007/s00253-005-0178-4

    CAS  PubMed  Google Scholar 

  • Wetzstein H, Schneider J, Karl W (2012) Metabolite proving fungal cleavage of the aromatic core part of a fluoroquinolone antibiotic. AMB Express 2:3. doi:10.1186/2191-0855-2-3

    PubMed Central  PubMed  Google Scholar 

  • Wolgel SA, Dege JE, Perkins-Olson PE, Jaurez-Garcia CH, Crawford RL, Münck E, Lipscomb JD (1993) Purification and characterization of protocatechuate 2,3-dioxygenase from Bacillus macerans: a new extradiol catecholic dioxygenase. J Bacteriol 175:4414–4426

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wunderwald U, Hofrichter M, Kreisel G, Fritsche W (1997) Transformation of difluorinated phenols by Penicillium frequentans Bi 7/2. Biodegradation 8:379–385. doi:10.1023/A:1008230926973

    CAS  PubMed  Google Scholar 

  • Wunderwald U, Kreisel G, Braun M, Schulz M, Jäger C, Hofrichter M (2000) Formation and degradation of a synthetic humic acid derived from 3-fluorocatechol. Appl Microbiol Biotechnol 53:441–446

    CAS  PubMed  Google Scholar 

  • Yano K, Wachi M, Tsuchida S, Kitazume T, Iwai N (2015) Degradation of benzotrifluoride via the dioxygenase pathway in Rhodococcus sp. 065240. Biosci Biotechnol Biochem 79:1–9. doi:10.1080/09168451.2014.982502

    Google Scholar 

  • Zaitsev GM, Uotila JS, Tsitko IV, Lobanok AG, Salkinoja-Salonen MS (1995) Utilization of halogenated benzenes, phenols, and benzoates by Rhodococcus opacus GM-14. Appl Environ Microbiol 61:4191–4201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zeyer J, Wasserfallen A, Timmis KN (1985) Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Appl Environ Microbiol 50:447–453

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhanel GG, Ennis K, Vercaigne L, Walkty A, Gin AS, Embil J, Smith H, Hoban DJ (2002) A critical review of the fluoroquinolones. Drugs 62:13–59. doi:10.2165/00003495-200262010-00002

    CAS  PubMed  Google Scholar 

  • Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749. doi:10.1099/00207713-50-2-743

    CAS  PubMed  Google Scholar 

  • Zhang X, Lai T, Kong RY (2012) Biology of fluoro-organic compounds. In: Horváth IT (ed) Fluorous chemistry. Springer, Berlin, pp 365–404

    Google Scholar 

  • Zhang X, Feng H, Shan D, Shentu J, Wang M, Yin J, Shen D, Huang B, Ding Y (2014) The effect of electricity on 2–fluoroaniline removal in a bioelectrochemically assisted microbial system (BEAMS). Electrochim Acta 135:439–446. doi:10.1016/j.electacta.2014.05.033

    CAS  Google Scholar 

  • Zhao Z, Feng Y, Feng H, Ghulam A, Su Y, Shen D (2014) Anaerobic biotransformation of fluoronitrobenzenes and microbial communities in methanogenic systems. J Environ Sci Health A 49:1187–1197. doi:10.1080/10934529.2014.897537

    CAS  Google Scholar 

  • Zhao Z, Tian B, Zhang X, Ghulam A, Zheng T, Shen D (2015) Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution. Biodegradation 26:1–14. doi:10.1007/s10532-014-9704-3

    PubMed  Google Scholar 

  • Zhou L, Marks TS, Poh RPC, Smith RJ, Chowdhry BZ, Smith ARW (2004) The purification and characterisation of 4-chlorobenzoate:CoA ligase and 4-chlorobenzoyl CoA dehalogenase from Arthrobacter sp. strain TM-1. Biodegradation 15:97–109

    CAS  PubMed  Google Scholar 

  • Zhu G, Wu H, Guo J, Kimaro FME (2004) Microbial degradation of fipronil in clay loam soil. Water Air Soil Pollut 153:35–44. doi:10.1023/B:WATE.0000019928.67686.b1

    CAS  Google Scholar 

  • Ziegler K, Braun K, Böckler A, Fuchs G (1987) Studies on the anaerobic degradation of benzoic acid and 2-aminobenzoic acid by a denitrifying Pseudomonas strain. Arch Microbiol 149:62–69. doi:10.1007/BF00423138

    Google Scholar 

  • Ziegler K, Buder R, Winter J, Fuchs G (1989) Activation of aromatic acids and aerobic 2-aminobenzoate metabolism in a denitrifying Pseudomonas strain. Arch Microbiol 151:171–176. doi:10.1007/BF00414434

    CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinrich Engesser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiel, M., Engesser, KH. The biodegradation vs. biotransformation of fluorosubstituted aromatics. Appl Microbiol Biotechnol 99, 7433–7464 (2015). https://doi.org/10.1007/s00253-015-6817-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6817-5

Keywords

Navigation