Skip to main content
Log in

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Haloarchaeon Halogranum amylolyticum

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Haloarchaea is an important group of polyhydroxyalkanoate (PHA)-accumulating organisms. However, few promising haloarchaeal species for economical and efficient PHA production have been reported. Here, we first discovered that Halogranum amylolyticum TNN58 could efficiently accumulate poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with a high 3-hydroxyvalerate (3HV) fraction using glucose as carbon source. Briefly, transmission electron microscopy (TEM) analysis revealed the presence of a large number of PHA granules in the cells. Gas chromatography–mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) analyses showed that PHAs synthesized from glucose was PHBV. Moreover, the 3HV content reached 20.1 mol%, which is the highest 3HV fraction thus far reported, as for PHBV produced by the wild-type strains grown on unrelated carbon courses. Fermentation experiments suggested that nitrogen-limited MG medium was better than nutrient-rich NOMG and AS168 medium for PHBV production. Additionally, glucose was the most suitable carbon source among the tested carbon sources. Interestingly, PHBV accumulation was almost paralleled by cell growth and glucose consumption. By applying the fed-batch process in fermentor, the PHBV production and cell dry weight were increased by approximately eight and four times, respectively, as compared with those of the batch process in shaking flasks. The classical PHA synthase genes were successfully cloned via consensus-degenerate hybrid oligonucleotide primers (CODEHOPs) and high-efficiency thermal asymmetric interlaced (hiTAIL) PCR methods. This finding suggested that H. amylolyticum shows promising potential in the low-cost biotechnological production of PHBV after further process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrei AS, Banciu HL, Oren A (2012) Living with salt: Metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9. doi:10.1111/j.1574-6968.2012.02526.x

    Article  CAS  PubMed  Google Scholar 

  • Antunes A, Taborda M, Huber R, MoissI C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220. doi:10.1099/ijs.0.65316-0

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi:10.1016/j.biomaterials.2005.04.036

    Article  CAS  PubMed  Google Scholar 

  • Cui HL, Yang X, Gao X, Xu XW (2011) Halogranum gelatinilyticum sp. nov. and Halogranum amylolyticum sp. nov., isolated from a marine solar saltern, and emended description of the genus Halogranum. Int J Syst Evol Microbiol 61:911–915. doi:10.1099/ijs.0.024976-0

    Article  CAS  PubMed  Google Scholar 

  • Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91. doi:10.1016/j.ymben.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  • Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaEC Hm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han J, Hou J, Liu H, Cai S, Feng B, Zhou J, Xiang H (2010a) Wide distribution among halophilic archaea of a novel polyhydroxyalkanoate synthase subtype with homology to bacterial type III synthases. Appl Environ Microbiol 76:7811–7819. doi:10.1128/AEM.01117-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han J, Li M, Hou J, Wu L, Zhou J, Xiang H (2010b) Comparison of four phaC genes from Haloferax mediterranei and their function in different PHBV copolymer biosyntheses in Haloarcula hispanica. Saline Syst 6:9. doi:10.1186/1746-1448-6-9

    Article  PubMed Central  PubMed  Google Scholar 

  • Han J, Zhang F, Hou J, Liu X, Li M, Liu H, Cai L, Zhang B, Chen Y, Zhou J, Hu S, Xiang H (2012) Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J Bacteriol 194:4463–4464. doi:10.1128/JB.00880-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han J, Hou J, Zhang F, Ai G, Li M, Cai S, Liu H, Wang L, Wang Z, Zhang S, Cai L, Zhao D, Zhou J, Xiang H (2013) Multiple propionyl coenzyme A-supplying pathways for production of the bioplastic poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Haloferax mediterranei. Appl Environ Microbiol 79:2922–2931. doi:10.1128/AEM.03915-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han J, Wu LP, Hou J, Zhao D, Xiang H (2015) Biosynthesis, characterization, and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules. doi:10.1021/bm5016267

    Google Scholar 

  • Hezayen FF, Rehm BHA, Eberhardt R, Steinbüchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: Application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325

  • Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. doi:10.1111/1462-2920.12356

    Article  CAS  PubMed  Google Scholar 

  • Koller M, Hesse P, Bona R, Kutschera C, Atlić A, Braunegg G (2007) Potential of various archae- and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7:218–226

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (2006) Deciphering bioplastic production. Nat Biotechnol 24:1227–1229. doi:10.1038/nbt1006-1227

    Article  CAS  PubMed  Google Scholar 

  • Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127. doi:10.1007/s00253-010-2611-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li T, Chen XB, Chen JC, Wu Q, Chen GQ (2014) Open and continuous fermentation: Products, conditions and bioprocess economy. Biotechnol J 9:1503–1511. doi:10.1002/biot.201400084

    Article  CAS  PubMed  Google Scholar 

  • Liu YG, Chen Y (2007) High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques 43:649-650, 652, 654 passim

  • Lu Q, Han J, Zhou L, Zhou J, Xiang H (2008) Genetic and biochemical characterization of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) synthase in Haloferax mediterranei. J Bacteriol 190:4173–4180. doi:10.1128/JB.00134-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci U S A 89:839–842

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ (2014) Engineering the diversity of polyesters. Curr Opin Biotechnol 29:24–33. doi:10.1016/j.copbio.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  • Pötter M, Madkour MH, Mayer F, Steinbüchel A (2002) Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426

    PubMed  Google Scholar 

  • Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A, Pelliccione S, Nicolaus G, Lama L, Nicolaus B (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57:1499–1503. doi:10.1099/ijs.0.64895-0

    Article  PubMed  Google Scholar 

  • Sankhla IS, Bhati R, Singh AK, Mallick N (2010) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) co-polymer production from a local isolate, Brevibacillus invocatus MTCC 9039. Bioresour Technol 101:1947–1953. doi:10.1016/j.biortech.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  • Sim SJ, Snell KD, Hogan SA, Stubbe J, Rha C, Sinskey AJ (1997) PHA synthase activity controls the molecular weight and polydispersity of polyhydroxybutyrate in vivo. Nat Biotechnol 15:63–67. doi:10.1038/nbt0197-63

    Article  CAS  PubMed  Google Scholar 

  • Soppa J (2005) From replication to cultivation: Hot news from Haloarchaea. Curr Opin Microbiol 8:737–744. doi:10.1016/j.mib.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  • Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: Polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480. doi:10.1146/annurev.biochem.74.082803.133013

    Article  CAS  PubMed  Google Scholar 

  • Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136. doi:10.1016/j.biortech.2011.05.068

    Article  CAS  PubMed  Google Scholar 

  • Tan D, Wu Q, Chen JC, Chen GQ (2014a) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26C:34–47. doi:10.1016/j.ymben.2014.09.001

    Article  PubMed  Google Scholar 

  • Tan GY, Chen CL, Ge L, Li L, Wang L, Zhao L, Mo Y, Tan SN, Wang JY (2014b) Enhanced gas chromatography-mass spectrometry method for bacterial polyhydroxyalkanoates analysis. J Biosci Bioeng 117:379–382. doi:10.1016/j.jbiosc.2013.08.020

    Article  CAS  PubMed  Google Scholar 

  • Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Article  PubMed  Google Scholar 

  • Wang GH, Xiao JH, Xiong TL, Li Z, Murphy RW, Huang DW (2013) High-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR) for determination of a highly degenerated prophage WO genome in a Wolbachia strain infecting a fig wasp species. Appl Environ Microbiol 79:7476–7481. doi:10.1128/AEM.02261-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65. doi:10.1016/j.copbio.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Chen JC, Wu Q, Chen GQ (2014a) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.10.008

    PubMed  Google Scholar 

  • Yin J, Fu XZ, Wu Q, Chen JC, Chen GQ (2014b) Development of an enhanced chromosomal expression system based on porin synthesis operon for Halomonas sp. Appl Microbiol Biotechnol 98:8987–8997. doi:10.1007/s00253-014-5959-1

    Article  CAS  PubMed  Google Scholar 

  • Zhao D, Cai L, Wu J, Li M, Liu H, Han J, Zhou J, Xiang H (2013) Improving polyhydroxyalkanoate production by knocking out the genes involved in exopolysaccharide biosynthesis in Haloferax mediterranei. Appl Microbiol Biotechnol 97:3027–3036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Heng-Lin Cui from Jiangsu University for the donation of the strain Halogranum amylolyticum TNN58. This work was supported by grant from the General Project of Beijing Municipal Education Commission (SQKM201311417003), the National Basic Research Program of China (973 Program) (2012CB725202),the National Natural Science Foundation of China (21276110), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the 111 Project (No.111-2-06).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-Ming Rao or Yan-He Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YX., Rao, ZM., Xue, YF. et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Haloarchaeon Halogranum amylolyticum . Appl Microbiol Biotechnol 99, 7639–7649 (2015). https://doi.org/10.1007/s00253-015-6609-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6609-y

Keywords

Navigation