Skip to main content

Advertisement

Log in

Characterization of the intestinal microbiota and its interaction with probiotics and health impacts

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The gastrointestinal tract (GIT) is a dynamic microecosystem containing a diversified microbiota of about 500–1000 different microbial species. Humans depend on their intestinal microbiota to carry out vital functions, and thus, equilibrium among intestinal groups of microorganisms is essential. In this review article, the use of traditional and molecular methods is discussed for the characterization of the intestinal microbiota, as well as its interaction with probiotics and their effects on health. An improved knowledge on intestinal microbiota composition and diversity and how changes in this microecosystem can cause or are associated with diseases remains far from being completely understood. Therefore, a better understanding of the GIT microbial populations is crucial, which will certainly contribute to the development of new strategies for the prevention and/or treatment of several diseases. The manipulation of the GIT microbiota by probiotics consumption is an interesting approach to maintain and restore human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdo Z, Schüette UME, Bent SJ, Williams CJ, Forney LJ, Joyce P (2006) Statistical methods for characterizing diversity of microbial communities by analysis of terminal restriction fragment length polymorphisms of 16S rRNA genes. Environ Microbiol 8:929–938

    PubMed  Google Scholar 

  • Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106:506–514

    CAS  PubMed  Google Scholar 

  • Alakomi HL, Skytta E, Saarela M, Mattila-Sandholm T, Latva-Kala K, Helander IM (2000) Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl Environ Microbiol 66:2001–2005

    PubMed Central  CAS  PubMed  Google Scholar 

  • Almeida MHB, Zoellner SS, Da Cruz AG, Moura MRL, Carvalho LMJ, Freitas MCJ, Sant’Ana AS (2008) Potentially probiotic açaí yogurt. Int J Dairy Technol 61:178–182

    Google Scholar 

  • Almeida CC, Lorena SLS, Pavan CR, Akasaka HMI, Mesquita MA (2012) Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr Clin Pract 27:247–251

    PubMed  Google Scholar 

  • Al-Salami H, Butt G, Fawcett JP, Tucker IG, Golocorbin-Kon S, Mikov M (2008) Probiotic treatment reduces blood glucose levels and increases systemic absorption of gliclazide in diabetic rats. Eur J Drug Metab Pharmacokinet 33:101–106

    CAS  PubMed  Google Scholar 

  • Al-Saleh AA, Metwalli AAM, Abu-Tarboush HM (2006) Bile salts and acid tolerance and cholesterol removal from media by some lactic acid bacteria and bifidobacteria. J Saudi Soc Food Nutr 1:1–17

    Google Scholar 

  • Alvaro E, Andrieux C, Rochet V, Rigottier-Gois L, Lepercq P, Sutren M, Galan P, Duval Y, Juste C, Dore J (2007) Composition and metabolism of the intestinal microbiota in consumers and non-consumers of yogurt. Br J Nutr 97:126–133

    CAS  PubMed  Google Scholar 

  • Amit-Romach E, Uni Z, Reifen R (2010) Multistep mechanism of probiotic bacterium, the effect on innate immune system. Mol Nutr Food Res 54:277–284

    CAS  PubMed  Google Scholar 

  • Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC (2010) Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol 10:1–11

    Google Scholar 

  • Ataie-Jafari A, Larijani B, Majd HA, Tahbaz F (2009) Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Ann Nutr Metab 54:22–27

    CAS  PubMed  Google Scholar 

  • Bach J-F (2002) The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med 347:911–920

    PubMed  Google Scholar 

  • Barbara G, Stanghellini V, Brandi G, Cremon C, Di Nardo G, De Giorgio R, Corinaldesi R (2005) Interactions between commensal bacteria and gut sensorimotor function in health and disease. Am J Gastroenterol 100:2560–2568

    CAS  PubMed  Google Scholar 

  • Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorent C, Gil A (2012) Probiotic mechanisms of action. Ann Nutr Metab 61:160–174

    CAS  PubMed  Google Scholar 

  • Bhardwaj A, Bhardwaj SV (2012) Role of probiotics in dental caries and periodontal disease. Arch Clin Exp Surg 1:45–49

    Google Scholar 

  • Bigliardi B, Galati F (2013) Innovation trends in food industry: the case of functional foods. Trends Food Sci Technol 31:118–129

    CAS  Google Scholar 

  • Björkstén B, Sepp E, Julge K, Voor T, Mikelsaar M (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108:516–520

    PubMed  Google Scholar 

  • Boerner BP, Sarvetnick NE (2011) Type 1 diabetes: role of intestinal microbiome in humans and mice. Ann N Y Acad Sci 1243:103–118

    CAS  PubMed  Google Scholar 

  • Borchers AT, Selmi C, Meyers FJ, Keen CL, Gershwin ME (2009) Probiotics and immunity. J Gastroenterol 44:26–46

    PubMed  Google Scholar 

  • Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A 20:16050–16055

    Google Scholar 

  • Brown MV, Schwalbach MS, Hewson I, Fuhrman JA (2005) Coupling 16S-ITS rDNA clone libraries and automated ribosomal intergenic spacer analysis to show marine microbial diversity: development and application to a time series. Environ Microbiol 7:1466–1479

    CAS  PubMed  Google Scholar 

  • Bull-Otterson L, Feng W, Kirpich I, Wang Y, Qin X, Liu Y, Gobejishvili L, Joshi-Barve S, Ayvaz T, Petrosino J, Kong M, Barker D, McClain C, Barve S (2013) Metagenomic analyses of alcohol induced pathogenic alterations in the intestinal microbiome and the effect of Lactobacillus rhamnosus GG treatment. PloS One 8, e53028

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll IM, Chang YH, Park J, Sartor RB, Ringel Y (2010) Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog 2:1–9

    Google Scholar 

  • Christensen HR, Frokiaer H, Pestka JJ (2002) Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J Immunol 168:171–178

    CAS  PubMed  Google Scholar 

  • Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S (2005) Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 68:2672–2678

    PubMed  Google Scholar 

  • Collado MC, Calabuig M, Sanz Y (2007) Differences between the fecal microbiota of coeliac infants and healthy controls. Curr Issues Intest Microbiol 8:9–14

    CAS  PubMed  Google Scholar 

  • Collado MC, Isolauri E, Salminen S, Sanz Y (2009) The impact of probiotic on gut health. Curr Drug Metab 10:68–78

    CAS  PubMed  Google Scholar 

  • Da Cruz AG, Fonseca Faria JDA, Isay Saad SM, André Bolini HM, Sant’Ana AS, Cristianini M (2010) High pressure processing and pulsed electric fields: potential use in probiotic dairy foods processing. Trends Food Sci Technol 21:483–493

    Google Scholar 

  • De Keersmaecker SC, Verhoeven TL, Desair J, Marchal K, Vanderleyden J, Nagy I (2006) Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiol Lett 259:89–96

    PubMed  Google Scholar 

  • De Sousa Moraes LF, Grzeskowiak LM, De Sales Teixeira TF, Gouveia Peluzio MDC (2014) Intestinal microbiota and probiotics in celiac disease. Clin Microbiol Rev 27:482–489

    PubMed  Google Scholar 

  • Del Campo R, Garriga M, Pérez-Aragón A, Guallarte P, Lamas A, Máiz L, Bayón C, Roy G, Cantón R, Zamora J, Baquero F, Suárez L (2014) Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 13:716–722

    PubMed  Google Scholar 

  • Delmont TO, Simonet P, Vogel TM (2012) Describing microbial communities and performing global comparisons in the ‘omic era. ISME J 6:1625–1628

    PubMed Central  PubMed  Google Scholar 

  • Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:2383–2400

    CAS  Google Scholar 

  • Dolin BJ (2009) Effects of a proprietary Bacillus coagulans preparation on symptoms of diarrhea-predominant irritable bowel syndrome. Methods Find Exp Clin Pharmacol 31:655–659

    CAS  PubMed  Google Scholar 

  • Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171

    PubMed Central  CAS  Google Scholar 

  • Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    CAS  PubMed  Google Scholar 

  • Ebel B, Lemetais G, Beney L, Cachon R, Sokol H, Langella P, Gervais P (2014) Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr 54:175–189

    PubMed  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed Central  PubMed  Google Scholar 

  • Engelbrektson A, Korzenik JR, Pittler A, Sanders ME, Klaenhammer TR, Leyer G, Kitts CL (2009) Probiotics to minimize the disruption of faecal microbiota in healthy subjects undergoing antibiotic therapy. J Med Microbiol 58:663–670

    CAS  PubMed  Google Scholar 

  • Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radic Biol Med 55:130–140

    CAS  PubMed  Google Scholar 

  • FAO/WHO (2002) Working group report on drafting guidelines for the evaluation of probiotics in food. Canada Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO), Ontario. Available at: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf. Accessed 30 Jul 2014

  • Feligini M, Panelli S, Sacchi R, Ghitti M, Capelli E (2015) Tracing the origin of raw milk from farm by using Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting of microbiota. Food Control 50:51–56

    CAS  Google Scholar 

  • Ferguson RM, Merrifield DL, Harper GM, Rawling MD, Mustafa S, Picchietti S, Balcazar JL, Davies SJ (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J Appl Microbiol 109:851–862

    CAS  PubMed  Google Scholar 

  • Filteau M, Matamoros S, Savard P, Roy D (2013) Molecular monitoring of fecal microbiota in healthy adults following probiotic yogurt intake. Pharma Nutr 1:123–129

    CAS  Google Scholar 

  • Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E, McTeague M, Sandler R, Wexler H, Marlowe EM, Collins MD, Lawson PA, Summanen P, Baysallar M, Tomzynski TJ, Read E, Johnson E, Rolfe R, Nasir P, Shah H, Haake DA, Manning P, Kaul A (2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35:S6–S16

    PubMed  Google Scholar 

  • Fooks LJ, Gibson GR (2002) Probiotics as modulators of the gut flora. Br J Nutr 88:S39–S49

    CAS  PubMed  Google Scholar 

  • Fuentes S, Egert M, Jiménez-Valera M, Ramos-Cormenzana A, Ruiz-Bravo A, Smidt H, Monteoliva-Sanchez M (2008) Administration of Lactobacillus casei and Lactobacillus plantarum affects the diversity of murine intestinal lactobacilli, but not the overall bacterial community structure. Res Microbiol 159:237–243

    CAS  PubMed  Google Scholar 

  • García-Albiach R, Pozuelo de Felipe MJ, Ângulo S, Morosini MI, Bravo D, Baquero F, Del Campo R (2008) Molecular analysis of yogurt containing Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in human intestinal microbiota. Am J Clin Nutr 87:91–96

    PubMed  Google Scholar 

  • Garrido D, Suau A, Pochart P, Cruchet S, Gotteland M (2005) Modulation of the fecal microbiota by the intake of a Lactobacillus johnsonii La1-containing product in human volunteers. FEMS Microbiol Lett 248:249–256

    CAS  PubMed  Google Scholar 

  • Gerritsen J, Smidt H, Rijkers GT, Vos WM (2011) Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr 6:209–240

    PubMed Central  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  • Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3:347–371

    PubMed  Google Scholar 

  • Gómez-Llorente C, Muñoz S, Gil A (2010) Role of Toll-like receptors in the development of immunotolerance mediated by probiotics. Proc Nutr Soc 69:381–389

    PubMed  Google Scholar 

  • González-Rodríguez I, Sánchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, Gueimonde M, Margolles A (2012) Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78:3992–3998

    PubMed Central  PubMed  Google Scholar 

  • Gosalbes MJ, Durbán A, Pignatelli M, Abellan JJ, Jiménez-Hernández N, Pérez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS ONE 6:e17447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guarner F, Malagelada JR (2003) Gut flora in health and disease. Lancet 361:512–519

    PubMed  Google Scholar 

  • Gueimonde M, Collado MC (2012) Metagenomics and probiotics. Clin Microbiol Infect 18:32–34

    CAS  PubMed  Google Scholar 

  • Guinane CM, Cotter PD (2013) Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol 6:295–308

    Google Scholar 

  • Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J Appl Microbiol 113:723–736

    CAS  PubMed  Google Scholar 

  • He T, Priebe MG, Zhong Y, Huang C, Harmsen HJM, Raangs GC, Antoine JM, Welling GW, Vonk RJ (2008) Effects of yogurt and bifidobacteria supplementation on the colonic microbiota in lactose-intolerant subjects. J Appl Microbiol 104:595–604

    CAS  PubMed  Google Scholar 

  • Heller KJ (2001) Probiotic bacteria in fermented foods: product characteristics and starter organisms. Am J Clin Nutr 73:374S–379S

    CAS  PubMed  Google Scholar 

  • Heller MJ (2002) DNA microarray technology: devices, systems and applications. Annu Rev Biomed Eng 4:129–153

    CAS  PubMed  Google Scholar 

  • Herfel TM, Jacobi SK, Lin X, Jouni ZE, Chichlowski M, Stahl CH, Odle J (2013) Dietary supplementation of Bifidobacterium longum strain AH1206 increases its cecal abundance and elevates intestinal interleukin-10 expression in the neonatal piglet. Food Chem Toxicol 60:116–122

    CAS  PubMed  Google Scholar 

  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepathol 11:506–514

    Google Scholar 

  • Hooda S, Boler BMV, Serao MCR, Brulc JM, Staeger MA, Boileau TW, Dowd SE, Fahey GC Jr, Swanson KS (2012) 454 Pyrosequencing reveals a shift in faecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J Nutr 142:1259–1265

    CAS  PubMed  Google Scholar 

  • Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI (2001) Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881–884

    CAS  PubMed  Google Scholar 

  • Hooper LV, Stappenbeck TS, Hong CV, Gordon JI (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    CAS  PubMed  Google Scholar 

  • Hougee S, Vriesema AJ, Wijering SC, Knippels LM, Folkerts G, Nijkamp FP, Knol J, Garssen J (2010) Oral treatment with probiotics reduces allergic symptoms in ovalbumin-sensitized mice: a bacterial strain comparative study. Int Arch Allergy Immunol 151:107–117

    CAS  PubMed  Google Scholar 

  • Howarth GS, Wang H (2013) Role of endogenous microbiota, probiotics and their biological products in human health. Nutrients 5:58–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang Y, Wang J, Cheng Y, Zheng Y (2010) The hypocholesterolaemic effects of Lactobacillus acidophilus American Type Culture Collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-Like 1. Br J Nutr 104:807–812

    CAS  PubMed  Google Scholar 

  • Hun L (2009) Bacillus coagulans significantly improved abdominal pain and bloating in patients with IBS. Postgrad Med 121:119–124

    PubMed  Google Scholar 

  • Im E, Choi YJ, Pothoulakis C, Rhee SH (2009) Bacillus polyfermenticus ameliorates colonic inflammation by promoting cytoprotective effects in colitic mice. J Nutr 139:1848–1854

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jauhiainen T, Collin M, Narva M, Cheng ZJ, Poussa T, Vapaatalo H, Korpela R (2005) Effect of long-term intake of milk peptides and minerals on blood pressure and arterial function in spontaneously hypertensive rats. Milchwissenschaft 60:358–363

    CAS  Google Scholar 

  • Jensen GS, Benson KF, Carter SG, Endres JR (2010) GanedenBC30™ cell wall and metabolites: anti-inflammatory and immune modulating effects in vitro. BMC Immunol 11:1–15

    Google Scholar 

  • Joossens M, Huys G, Cnockaert M, De Preter V, Verbeke K, Rutgeerts P, Vandamme P, Vermeire S (2011) Dysbiosis of the faecal microbiota in patients with Crohn’s disease and their unaffected relatives. Gut 60:631–637

    PubMed  Google Scholar 

  • Kajander K, Myllyluoma E, Rajili´c –Stojanovi´c M, Kyronpalo S, Rasmussen M, Jarvenpaa S, Zoetendal EG, Vos WMD, Vapaatalo H, Korpela R (2008) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57

    CAS  PubMed  Google Scholar 

  • Kerckhoffs AP, Samsom M, Van der Rest ME, De Vogel J, Knol J, Ben-Amor K, Akkermans LM (2009) Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol 15:2887–2892

    PubMed Central  PubMed  Google Scholar 

  • Kim YS, Ho SB (2010) Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 12:319–330

    PubMed Central  PubMed  Google Scholar 

  • Kim Y, Lee D, Kim D, Cho J, Yang J, Chung M, Kim K, Ha N (2008) Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch Pharm Res 31:468–473

    CAS  PubMed  Google Scholar 

  • Kimmel M, Keller D, Farmer S, Warrino DE (2010) A controlled clinical trial to evaluate the effect of GanedenBC30 on immunological markers. Methods Find Exp Clin Pharmacol 32:129–132

    CAS  PubMed  Google Scholar 

  • Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32:1–7

    CAS  PubMed  Google Scholar 

  • Kirjavainen PV, Salminen SJ, Isolauri E (2003) Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. J Pediatr Gastroenterol Nutr 36:223–227

    PubMed  Google Scholar 

  • Kitts CL (2001) Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr Issues Intest Microbiol 2:17–25

    CAS  PubMed  Google Scholar 

  • Kostic AD, Xavier RJ, Gevers D (2014) The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–1499

    CAS  PubMed  Google Scholar 

  • Krasse P, Carlsson B, Dahl C, Paulsson A, Nilsson A, Sinkiewicz G (2005) Decreased gum bleeding and reduced gingivitis by the probiotic Lactobacillus reuteri. Swed Dent J 30:55–60

    Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lahtinen SJ, Tammela L, Korpela J, Parhiala R, Ahokoski H, Mykkä nen H, Salminen SJ (2009) Probiotics modulate the Bifidobacterium microbiota of elderly nursing home residents. Age 31:59–66

    PubMed Central  PubMed  Google Scholar 

  • Langley SR, Dwyer J, Drozdov I, Yin X, Mayr M (2013) Proteomics: from single molecules to biological Pathways. Cardiovasc Res 97:612–622

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lebeer S, Vanderleyden J, De Keersmaecker CJ (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8:171–184

    CAS  PubMed  Google Scholar 

  • Lee NK, Park JS, Park E, Paik HD (2007) Adherence and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Lett Appl Microbiol 44:274–278

    PubMed  Google Scholar 

  • Lee J, Rheem S, Yun B, Ahn Y, Joung J, Lee SJ, Oh S, Chun T, Rheem I, Yea HS, Lim KS, Cha JM, Kim S (2013) Effects of probiotic yoghurt on symptoms and intestinal microbiota in patients with irritable bowel syndrome. Int J Dairy Technol 66:243–255

    CAS  Google Scholar 

  • Lee J-Y, Chu S-H, Jeon JY, Lee M-K, Park J-H, Lee D-C, Lee J-W, Kim N-K (2014) Effects of 12 weeks of probiotic supplementation on quality of life in colorectal cancer survivors: a double-blind, randomized, placebo-controlled trial. Dig Liver Dis 46:1126–1132

    PubMed  Google Scholar 

  • Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Dore J (2013) A metagenomic insight into our gut’s microbiome. Gut 62:146–158

    PubMed  Google Scholar 

  • Levy M, Thaiss CA, Elinav E (2014) The microbiota: a new player in the etiology of colorectal cancer. Curr Colorectal Cancer Rep 10:1–8

    Google Scholar 

  • Li F, Hullar MA, Lampe JW (2007) Optimization of terminal restriction fragment polymorphism (TRFLP) analysis of human gut microbiota. J Microbiol Methods 68:303–311

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lutgendorff F, Akkermans LMA, Söderholm JD (2008) The role of microbiota and probiotics in stress-induced gastrointestinal damage. Curr Mol Med 8:282–298

    CAS  PubMed  Google Scholar 

  • Maathuis AJH, Keller D, Farmer S (2010) Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Benefic Microbes 1:31–36

    CAS  Google Scholar 

  • Maekawa T, Hajishengallis G (2014) Topical treatment with probiotic Lactobacillus brevis CD2 inhibits experimental periodontal inflammation and bone loss. J Periodontal Res 49:785–791

    CAS  PubMed  Google Scholar 

  • Makras L, Triantafyllou V, Fayol-Messaoudi D, Adriany T, Zoumpopoulou G, Tsakalidou E, Servin A, DeVuyst L (2006) Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res Microbiol 157:241–247

    CAS  PubMed  Google Scholar 

  • Malinen E, Krogius-Kurikka L, Lyra A, Nikkıla J, Jaaskelainen A, Rinttila T, Vilpponen-Salmela T, Von Wright AJ, Palva A (2010) Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol 16:4532–4540

    PubMed Central  CAS  PubMed  Google Scholar 

  • Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211

    PubMed Central  CAS  PubMed  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martinez RCR, Seney SL, Summers KL, Nomizo A, De Martinis ECP, Reid G (2009) Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol 53:487–495

    CAS  PubMed  Google Scholar 

  • Martinez RCR, Cardarelli H, Borst W, Albrecht S, Schols H, Gutiérrez OP, Maathuis A, Franco BDGM, De Martinis ECP, Zoetendal E, Venema K, Saad SMI, Smidt H (2013) Effect of galactooligosaccharides and Bifidobacterium animalis Bb-12 on growth of Lactobacillus amylovorus DSM 16698, microbial community structure and metabolite production in an in vitro colonic model set up with human or pig microbiota. FEMS Microbiol Ecol 84:110–123

    CAS  PubMed  Google Scholar 

  • Marzotto M, Maffeis C, Paternoster T, Ferrario R, Rizzotti L, Pellegrino M, Dellaglio F, Torriani S (2006) Lactobacillus paracasei A survives gastrointestinal passage and affects the fecal microbiota of healthy infants. Res Microbiol 157:857–866

    CAS  PubMed  Google Scholar 

  • Mättö J, Maunuksela L, Kajander K, Palva A, Korpela R, Kassinen A, Saarela M (2005) Composition and temporal stability of gastrointestinal microbiota in irritable bowel syndrome—a longitudinal study in IBS and control subjects. FEMS Immunol Med Microbiol 43:213–222

    PubMed  Google Scholar 

  • Maukonen J, Satokari R, Matto J, So derlund H, Mattila-Sandholm T, Saarela M (2006) Prevalence and temporal stability of selected clostridial groups in irritable bowel syndrome in relation to predominant faecal bacteria. J Med Microbiol 55:625–633

    CAS  PubMed  Google Scholar 

  • McCartney AL (2002) Application of molecular biological methods for studying probiotics and the gut flora. Br J Nutr 88:S29–S37

    CAS  PubMed  Google Scholar 

  • Medici M, Vinderola CG, Perdigón G (2004) Gut mucosal immunomodulation by probiotic fresh cheese. Int Dairy J 14:611–618

    Google Scholar 

  • Messaoudi M, Violle N, Bisson J, Desor D, Javelot H, Rougeot C (2011) Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes 2:256–261

    PubMed  Google Scholar 

  • Miquel S, Martín R, Rossi O, Bermúdez-Humarán LG, Chatel JM, Sokol H, Thomas M, Wells JM, Langella P (2013) Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol 16:1–7

    Google Scholar 

  • Mirzaei H, Shahirfar H, Mobayen H (2012) Effect of consumption of fermented milk with Lactobacillus casei and Lactobacillus plantarum isolated from ligvan cheese against E. coli O157:H7 induced infections in BALB/C mice. Adv Biores 3:34–38

    Google Scholar 

  • Mohan R, Koebnick C, Schildt J, Schmidt S, Mueller M, Possner M, Radke M, Blaut M (2006) Effects of Bifidobacterium lactis Bb12 supplementation on intestinal microbiota of preterm infants: a double-blind, placebo-controlled, randomized study. J Clin Microbiol 44:4025–4031

    PubMed Central  PubMed  Google Scholar 

  • Montesi A, García-Albiach R, Pozuelo MJ, Pintado C, Goñi I, Rotger R (2005) Molecular and microbiological analysis of caecal microbiota in rats fed with diets supplemented either with prebiotics or probiotics. Int J Food Microbiol 98:281–289

    CAS  PubMed  Google Scholar 

  • Muyzer G (1999) DGGE / TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2:317–322

    CAS  PubMed  Google Scholar 

  • Ng SC, Hart AL, Kamm MA, Stagg AJ, Knight SC (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15:300–310

    CAS  PubMed  Google Scholar 

  • Ng SC, Lam EFC, Lam TTY, Chan Y, Law W, Tse PCH, Kamm MA, Sung JJY, Chan FKL, Wu JCY (2013) Effect of probiotic bacteria on the intestinal microbiota in irritable bowel syndrome. J Gastroenterol Hepatol 28:1624–1631

    PubMed  Google Scholar 

  • Nielsen DS, Cho GS, Hanak A, Huch M, Franz CM, Arneborg N (2010) The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int J Food Microbiol 141:S53–S59

    PubMed  Google Scholar 

  • Nobaek S, Johansson M, Molin G, Ahrné S, Jeppsson B (2000) Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am J Gastroenterol 95:1231–1238

    CAS  PubMed  Google Scholar 

  • Nogueira JCR, Gonçalves MCR (2011) Probióticos - Revisão da Literatura. RBCS 15:487–492

    Google Scholar 

  • O’Mahony L, Mccarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and Bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128:541–551

    PubMed  Google Scholar 

  • O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    PubMed Central  PubMed  Google Scholar 

  • Ohland CL, Macnaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298:G807–G819

    CAS  PubMed  Google Scholar 

  • Osborn AM, Moore ER, Timmis KN (2000) An evaluation of terminal restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microbiol 2:39–50

    CAS  PubMed  Google Scholar 

  • Ouwehand AC, Bergsma N, Parhiala R, Lahtinen S, Gueimonde M, Finne-Soveri H, Strandberg T, Pitkälä K, Salminen S (2008) Bifidobacterium microbiota and parameters of immune function in elderly subjects. FEMS Immunol Med Microbiol 53:18–25

    CAS  PubMed  Google Scholar 

  • Paik H, Park J, Park E (2005) Effects of Bacillus polyfermenticus SCD on Lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol Pharm Bull 28:1270–1274

    CAS  PubMed  Google Scholar 

  • Palomar MM, Galdeano CM, Perdigón G (2013) Influence of a probiotic Lactobacillus strain on the intestinal ecosystem in a stress model mouse. Brain Behav Immun 35:77–85

    PubMed  Google Scholar 

  • Paul J, Verma AK, Verma R (2007) Role of gut flora in inflammatory bowel disease: a state of art. In: Mendez-Vilas A (ed) Communicating current research and educational topics and trends in applied microbiology. Formatex, Madrid, pp 705–718

    Google Scholar 

  • Peterson DA, Frank DN, Pace NR, Gordon JI (2008) Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3:417–427

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C (2011) Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 5:71–86

    PubMed Central  PubMed  Google Scholar 

  • Preidis GA, Saulnier DM, Blutt SE, Mistretta T, Riehle KP, Major AM, Venable SF, Finegold MJ, Petrosino JF, Conner ME, Versalovic J (2012) Probiotics stimulate enterocyte migration and microbial diversity in the neonatal mouse intestine. FASEB J26:1960–1969

    Google Scholar 

  • Rajilic-Stojanovic M (2013) Function of the microbiota. Best Pract Res Clin Gastroenterol 27:5–16

    CAS  PubMed  Google Scholar 

  • Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136

    PubMed  Google Scholar 

  • Ramos MA, Weber B, Gonçalves JF, Santos GA, Rema P, Ozório ROA (2013) Dietary probiotic supplementation modulated gut microbiota and improved growth of juvenile rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A 166:302–307

    CAS  Google Scholar 

  • Rampelli S, Candela M, Severgnini M, Biagi E, Turroni S, Roselli M, Carnevali P, Donini L, Brigidi P (2013) A probiotics-containing biscuit modulates the intestinal microbiota in the elderly. J Nutr Health Aging 17:166–172

    CAS  PubMed  Google Scholar 

  • Ranadheera RDCS, Baines SK, Adams MC (2010) Importance of food in probiotic efficacy. Food Res Int 43:1–7

    CAS  Google Scholar 

  • Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1:1–6

    Google Scholar 

  • Rastogi G, Sani RK (2011) Molecular techniques to assess microbial community structure, function, and dynamics in the environment. In: Ahmad I, Ahmad F, Pichtel J (eds) Microbes and microbial technology: agricultural and environmental applications. Springer Science + Business Media LLC, New York, pp 29–57

    Google Scholar 

  • Rijkers GT, Bengmark S, Enck P, Haller D, Herz U, Kalliomaki M, Kudo S, Lenoir-Wijnkoop I, Mercenier A, Myllyluoma E, Rabot S, Rafter J, Szajewska H, Watzl B, Wells J, Wolvers D, Antoine JM (2010) Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. J Nutr 140:671S–676S

    CAS  PubMed  Google Scholar 

  • Roger LC, Costabile A, Holland DT, Hoyles L, McCartney AL (2010) Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341

    CAS  PubMed  Google Scholar 

  • Rolfe RD (1991) Population dynamics of the intestinal tract. In: Blankenship LC (ed) Colonization control of human bacterial enteropathogens in poultry. Academic Press, San Diego, pp 59–75

    Google Scholar 

  • Russell WR, Duncan SH (2013) Advanced analytical methodologies to study the microbial metabolome of the human gut. Trends Analyt Chem 52:54–60

    CAS  Google Scholar 

  • Salminen S, Gueimonde M, Isolauri E (2005) Probiotics that modify disease risk. J Nutr 135:1294–1298

    CAS  PubMed  Google Scholar 

  • Sanders ME, Gibson G, Gill HS, Guarner F (2007) Probiotics: their potential to impact human health. CAST 36. Available at: http://www.cast-science.org/download.cfm?PublicationID=2930&File=f030d2d5777f5676ed033b112a7e65524518. Accessed 16 Oct 2014

  • Sartor RB (2006) Mechanisms of disease: pathogenesis of Crohn’s disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol 3:390–407

    CAS  PubMed  Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM (2001) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231

    CAS  PubMed  Google Scholar 

  • Scanlan PD, Shanahan F, Clune Y, Collins JK, O’Sullivan GC, O’Riordan M, Holmes E, Wang Y, Marchesi JR (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10:789–798

    CAS  PubMed  Google Scholar 

  • Sekirov I, Russell SL, Antunes LCM, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90:859–904

    CAS  PubMed  Google Scholar 

  • Seppo L, Jauhiainen T, Poussa T, Korpela R (2003) A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am J Clin Nutr 77:326–330

    CAS  PubMed  Google Scholar 

  • Shah NP (2007) Functional cultures and health benefits. Int Dairy J 17:1262–1277

    Google Scholar 

  • Sindhu SC, Khetarpaul N (2003) Effect of feeding probiotic fermented indigenous food mixture on serum cholesterol levels in mice. Nutr Res 23:1071–1080

    CAS  Google Scholar 

  • Smith CJ, Danilowicz BS, Clear AK, Costello FJ, Wilson B, Meijer WG (2005) T-Align, a web-based tool for comparison of multiple terminal restriction fragment length polymorphism profiles. FEMS Microbiol Ecol 54:375–380

    CAS  PubMed  Google Scholar 

  • Staliano CD, Martinez RCR, Saad SMI (2015) Beneficial microorganisms viability and sensory acceptance of a potentially synbiotic dairy-based tomato spread. LWT Food Sci Technol 62:682–688

    CAS  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang K-Q, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93:993–1003

    CAS  PubMed  Google Scholar 

  • Sun Y-Z, Yang H-L, Ma R-L, Song K, Lin W-Y (2011) Molecular analysis of autochthonous microbiota along the digestive tract of juvenile grouper Epinephelus coioides following probiotic Bacillus pumilus administration. J Appl Microbiol 110:1093–1103

    CAS  PubMed  Google Scholar 

  • Suzuki S, Shimojo N, Tajiri Y, Kumemura M, Kohno Y (2007) Differences in the composition of intestinal Bifidobacterium species and the development of allergic diseases in infants in rural Japan. Clin Exp Allergy 37:506–511

    CAS  PubMed  Google Scholar 

  • Tabuchi M, Ozaki M, Tamura A, Yamada N, Ishida T, Hosoda M, Hosono A (2003) Antidiabetic effect of Lactobacillus GG in streptozotocin-induced diabetic rats. Biosci Biotechnol Biochem 67:1421–1424

    CAS  PubMed  Google Scholar 

  • Tachon S, Lee B, Marco ML (2014) Diet alters probiotic Lactobacillus persistence and function in the intestine. Environ Microbiol 16:2915–2926

    CAS  PubMed  Google Scholar 

  • Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M, Kurokawa M (2011) Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int Immunopharmacol 11:1976–1983

    CAS  PubMed  Google Scholar 

  • Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    PubMed Central  CAS  PubMed  Google Scholar 

  • Teughels W, Durukan A, Ozcelik O, Pauwels M, Quirynen M, Haytac MC (2013) Clinical and microbiological effects of Lactobacillus reuteri probiotics in the treatment of chronic periodontitis: a randomized placebo-controlled study. J Clin Periodontol 40:1025–1035

    PubMed Central  PubMed  Google Scholar 

  • Thirabunyanon M, Boonprasom P, Niamsup P (2009) Probiotic potential of lactic acid bacteria isolated from fermented dairy milks on antiproliferation of colon cancer cells. Biotechnol Lett 31:571–576

    CAS  PubMed  Google Scholar 

  • Tilg H, Moschen AR, Kaser A (2009) Obesity and the microbiota. Gastroenterology 136:1476–1483

    PubMed  Google Scholar 

  • Tsai Y-T, Cheng P-C, Pan T-M (2012) The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl Microbiol Biotechnol 96:853–862

    CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    PubMed  Google Scholar 

  • Valásková V, Baldrian P (2009) Denaturing gradient gel electrophoresis as a fingerprinting method for the analysis of soil microbial communities. Plant Soil Environ 55:413–423

    Google Scholar 

  • Vanhoutte T, De Preter V, De Brandt E, Verbeke K, Swings J, Huys G (2006) Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl Environ Microbiol 72:5990–5997

  • Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, DuBois A, Khlebnikov A, Vliegb JETV, Punit S, Glickman JN, Onderdonk A, Glimcher LH, Garrett WS (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci U S A 107:18132–18137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ventura M, Elli M, Reniero R, Zink R (2001) Molecular microbial analysis of Bifidobacterium isolates from different environments by the species-specific amplified ribosomal DNA restriction analysis (ARDRA). FEMS Microbiol Ecol 36:113–121

    CAS  PubMed  Google Scholar 

  • Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189

    CAS  PubMed  Google Scholar 

  • Vergari F, Tibuzzi A, Basile G (2010) An overview of the functional food market: from marketing issues and commercial players to future demand from life in space. In: Giardi MT, Rea G, Berra B (eds) Bio-farms for nutraceuticals: functional food and safety control by biosensors. Landes Bioscience and Springer Science + Business Media, Austin, pp 308–327

    Google Scholar 

  • VidyaLaxme B, Rovetto A, Grau R, Agrawal R (2012) Synergistic effects of probiotic Leuconostoc mesenteroides and Bacillus subtilis in malted ragi (Eleucine corocana) food for antagonistic activity against V. cholerae and other beneficial properties. J Food Sci Technol 51:3072–3082

    Google Scholar 

  • Wang MF, Lin HC, Wang YY, Hsu CH (2004) Treatment of perennial allergic rhinitis with lactic acid bacteria. Pediatr Allergy Immunol 15:152–158

    PubMed  Google Scholar 

  • Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, Antonopoulos DA, Chang EB, Claud EC (2009) 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 3:944–954

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 106:3698–3703

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao C, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J (2010) Molecular characterization of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    CAS  PubMed  Google Scholar 

  • Yanine N, Araya I, Brignardello-Petersen R, Carrasco-Labra A, González A, Preciado A, Villanueva J, Sanz M, Martin C (2013) Effects of probiotics in periodontal diseases: a systematic review. Clin Oral Investig 17:1627–1634

    PubMed  Google Scholar 

  • Yeon S, You YS, Kwon H, Yang EH, Ryu J, Kang BH, Kang J (2010) Fermented milk of Lactobacillus helveticus IDCC3801 reduces beta-amyloid and attenuates memory deficit. J Funct Foods 2:143–152

    CAS  Google Scholar 

  • Young VB, Schmidt TM (2004) Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. J Clin Microbiol 42:1203–1206

    PubMed Central  PubMed  Google Scholar 

  • Zhang J, Wang L, Guo Z, Sun Z, Gesudu Q, Kwok L, Menghebilige, Zhang H (2014) 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang. FEMS Microbiol Ecol 88:612–622

    CAS  PubMed  Google Scholar 

  • Zhong Y, Priebe MG, Vonk RJ, Huang C-Y, Antoine J-M, He T, Harmsen HJM, Welling GW (2004) The role of colonic microbiota in lactose intolerance. Dig Dis Sci 49:78–83

    CAS  PubMed  Google Scholar 

  • Zoetendal EG, Mackie RI (2005) Molecular methods in microbial ecology. In: Tannock GW (ed) Probiotics and prebiotics: scientific aspects. Caister Academic Press, Dunedin, pp 1–24

    Google Scholar 

Download references

Acknowledgments

The authors thank the financial support provided by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico - Project 400806/2013-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson de Souza Sant’Ana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almada, C.N., Nunes de Almada, C., Martinez, R.C.R. et al. Characterization of the intestinal microbiota and its interaction with probiotics and health impacts. Appl Microbiol Biotechnol 99, 4175–4199 (2015). https://doi.org/10.1007/s00253-015-6582-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6582-5

Keywords

Navigation