Skip to main content
Log in

Trichloroethylene removal and bacterial variations in the up-flow anaerobic sludge blanket reactor in response to temperature shifts

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Trichloroethylene (TCE) degradation and the variations of bacteria composition and structure in the up-flow anaerobic sludge blanket (UASB) reactor were investigated by increasing the operating temperature from 20 to 40 °C. The influent was supplemented with 36.5 mg/L of TCE. There was a rise in the chemical oxygen demand (COD) removal efficiency from 20 to 35 °C and a decline when temperature enhanced to 40 °C. It reached maximum at 35 °C. In addition, TCE removal efficiency increased with temperature varying from 20 to 35 °C, and it dropped dramatically to 78.38 % at 40 °C, which presumably because the genus of Dehalobacter, a kind of bacteria with the ability to dechlorinate TCE to the corresponding chlorinated products, was not detected at 40 °C according to sequencing results. The Illumina MiSeq platform was adopted to explore the bacteria composition and structure in response to temperature shifts. The results indicated that temperature impacted greatly on the dominance and presence of specific populations at different taxonomic levels. Importantly, the class Dehalococcoidia was detected from 25 to 40 °C, in which there were many well-known Dehalococcoides sp. strains that were capable of complete dechlorination of TCE to ethene. It also suggested the potential function of the dominant genera (non-dechlorinating bacteria and dechlorinating bacteria) in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AWWA (2005) Standard methods for the examination of water and wastewater. Washington, DC Standard Methods for the Examination of Water and Wastewater 21

  • Bryan P, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing Methanogenic bacteria. Appl Environ Microbio 33:1162–1169

    Google Scholar 

  • Bryan P, Tracy SWJ, Fast AG, Indurthi DC, Papoutsakis ET (2012) Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Curr Opin Biotech 23:364–381

    Article  Google Scholar 

  • Castelló E, García y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrogen Energ 34:5674–5682

    Article  Google Scholar 

  • Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Micr 55:1319–1324

    Article  CAS  Google Scholar 

  • Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064

    Article  CAS  PubMed  Google Scholar 

  • Chong S, Sen TK, Kayaalp A, Ang HM (2013) The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a state-of-the-art review. Water Res 46:3434–3470

    Article  Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microb 64:869–3877

    Google Scholar 

  • Donoso-Bravo A, Bandara WMKRTW, Satoh H, Ruiz-Filippi G (2013) Explicit temperature-based model for anaerobic digestion: application in domestic wastewater treatment in a UASB reactor. Bioresour Technol 133:437–442

    Article  CAS  PubMed  Google Scholar 

  • Ergüder TH, Tezel U, Güven E, Demirer GN (2001) Anaerobic biotransformation and methane generation potential of cheese whey in batch and UASB reactors. Waste Manage 21:643–650

    Article  Google Scholar 

  • Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J (2012) An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2:6

    Article  Google Scholar 

  • Friis AK, Heimann AC, Jakobsen R, Albrechtsen HJ, Cox E, Bjerg PL (2007) Temperature dependence of anaerobic TCE-dechlorination in a highly enriched Dehalococcoides-containing culture. Water Res 41:355–364

    Article  CAS  PubMed  Google Scholar 

  • Gitipour A, Badawy AE, Arambewela M, Miller B, Scheckel K, Elk M, Ryu H, Gomez-Alvarez V, Domingo JS, Thiel S, Tolaymat T (2013) The impact of silver nanoparticles on the composting of municipal solid waste. Environ Sci Technol 47:14385–14393

    Article  CAS  PubMed  Google Scholar 

  • Glöckner J, Kube M, Shrestha PM, Weber M, Glöckner FO, Reinhardt R, Liesack W (2010) Phylogenetic diversity and metagenomics of candidate division OP3. Environ Microbiol 12:1218–1229

    Article  PubMed  Google Scholar 

  • Grabowski A, Tindall BJ, Bardin V, Blanchet D, Jeanthon C (2005) Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int J Syst Evol Micr 55:1113–1121

    Article  CAS  Google Scholar 

  • Grostern A, Edwards EA (2006) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbio 72:7849–7856

    Article  CAS  Google Scholar 

  • Habeeb SA, Aziz Bin Abdul Latiff AB, Zawawi Bin Daud Zulkifli Bin Ahmad (2011) A review on granules initiation and development inside UASB Reactor and the main factors affecting granules formation process. Int J Energ Environ 2:311–320

    Google Scholar 

  • Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169:313–321

    Article  CAS  PubMed  Google Scholar 

  • Hug LA, Beiko RG, Rowe AR, Richardson RE, Edwards EA (2012) Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics 13:327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwu CS, Lu CJ (2008) Continuous dechlorination of tetrachloroethene in an upflow anaerobic sludge blanket reactor. Biotechnol Lett 30:1589–1593

    Article  CAS  PubMed  Google Scholar 

  • Johnson MR, Conners SB, Montero CI, Chou CJ, Shockley KR, Kelly RM (2006) The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture. Appl Environ Microbio 72:811–818

    Article  CAS  Google Scholar 

  • Krakat N, Schmidt S, Scherer P (2011) Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 102:5692–5701

    Article  CAS  PubMed  Google Scholar 

  • Leps J, Smilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Levén L, Eriksson ARB, Schnürer A (2007) Effect of process temperature on bacterial and archaeal communities in two methanogenic bioreactors treating organic household waste. FEMS Microbiol Ecol 59:683–693

    Article  PubMed  Google Scholar 

  • Liang DW, Zhang T, Fang HH (2007) Anaerobic degradation of dimethyl phthalate in wastewater in a UASB reactor. Water Res 41:2879–2884

    Article  CAS  PubMed  Google Scholar 

  • Liang B, Cheng H, Van Nostrand JD, Ma J, Yu H, Kong D, Liu W, Ren N, Wu L, Wang A, Lee DJ, Zhou J (2014) Microbial community structure and function of Nitrobenzene reduction biocathode in response to carbon source switchover. Water Res 54:137–148

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Micr 63:625–635

    Article  Google Scholar 

  • Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, Usadel B (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma J, Wang Z, Yang Y, Mei X, Wu Z (2013) Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454 high-throughput pyrosequencing. Water Res 47:859–869

    Article  CAS  PubMed  Google Scholar 

  • Magoc T, Salzberg S (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Masoud W, Takamiya M, Vogensen FK, Lillevang S, Al-Soud WA, Sørensen SJ, Jakobsen M (2011) Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 21:142–148

    Article  CAS  Google Scholar 

  • McCarty PL (2010) Groundwater contamination by chlorinated solvents: history, remediation technologies and strategies. In: Stroo HF and Ward CH (eds.) In Situ Remediation of Chlorinated Solvent Plumes. Springer Science Business Media, New York, pp 1–28

    Chapter  Google Scholar 

  • Mitra S, Gupta SK (2013) Biodegradation of trichloroethylene in anaerobic hybrid reactor. Environ Prog Sustain 32:1055–1060

    Article  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozdemir C, Dursun S, Karatas M, Sen N, Sahinkaya S (2007) Removal of trichloroethylene (TCE) in up flow anaerobic sludge blanket reactors (UASB). Biotechnol Biotec Eq 21:107–112

    Article  Google Scholar 

  • Plugge CM, Stams AJM (2001) Arginine catabolism by thermanaerovibrio acidaminovorans. FEMS Microbiol Lett 195:259–262

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, Mclnerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK (2009) Biodegradation of trichloroethylene (TCE) by methanotrophic community. Bioresour Technol 100:2469–2474

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Vishwakarma P, Singh RS, Upadhyay SN, Dubey SK (2010a) Biofiltration of trichloroethylene using diazotrophic bacterial community. Bioresour Technol 101:2126–2133

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Singh RS, Upadhyay SN, Dubey SK (2010b) Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol. Bioresour Technol 101:8119–8126

    Article  CAS  PubMed  Google Scholar 

  • Shukla AK, Upadhyay SN, Dubey SK (2014) Current trends in trichloroethylene biodegradation: a review. Crit Rev Biotechnol 34:101–114

    Article  CAS  PubMed  Google Scholar 

  • Siggins A, Enright AM, O'Flaherty V (2011a) Temperature dependent (37-15 °C) anaerobic digestion of a trichloroethylene-contaminated wastewater. Bioresour Technol 102:7645–7656

    Article  CAS  PubMed  Google Scholar 

  • Siggins A, Enright AM, O'Flaherty V (2011b) Low-temperature (7 °C) anaerobic treatment of a trichloroethylene-contaminated wastewater: microbial community development. Water Res 45:4035–4046

    Article  CAS  PubMed  Google Scholar 

  • Sponza DT (2001) Anaerobic granule formation and tetrachloroethylene (TCE) removal in an upflow anaerobic sludge blanket (UASB) reactor. Enzyme Microb Tech 29:417–427

    Article  CAS  Google Scholar 

  • Sponza DT, Uluköy A (2008) Kinetic of carbonaceous substrate in an upflow anaerobic sludge sludge blanket (UASB) reactor treating 2,4 dichlorophenol (2,4 DCP). J Environ Manage 86:121–131

    Article  CAS  PubMed  Google Scholar 

  • Subramanyam R, Mishra IM (2007) Biodegradation of catechol (2-hydroxy phenol) bearing wastewater in an UASB reactor. Chemosphere 69:816–824

    Article  CAS  PubMed  Google Scholar 

  • Tresse O, Mounien F, Lévesque MJ, Guiot S (2005) Comparison of the microbial population dynamics and phylogenetic characterization of a CANOXIS reactor and a UASB reactor degrading trichloroethene. J Appl Microbiol 98:440–449

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb 73:5261–5267

    Article  CAS  Google Scholar 

  • Ye L, Zhang T (2013) Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl Microbiol Biotechnol 97:2681–2690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Zhu W, Tang C, Suo Y, Gao L, Yuan X, Wang X, Cui Z (2012) Bioreactor performance and methanogenic population dynamics in a low-temperature (5-18 °C) anaerobic fixed-bed reactor. Bioresour Technol 104:136–143

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu Y, Hu M, Jiang Z (2014) Acclimation of the trichloroethylene- degrading anaerobic granular sludge and the degradation characteristics in an upflow anaerobic sludge blanket reactor. Water Sci Technol 69:120–127

    Article  PubMed  Google Scholar 

  • Zhuang P, Pavlostathis SG (1995) Effect of temperature, pH and electron donor on the microbial reductive dechlorination of chloroalkenes. Chemosphere 31:3537–3548

    Article  CAS  Google Scholar 

  • Zielińska M, Cydzik-Kwiatkowska A, Zieliński M, Dębowski M (2013) Impact of temperature, microwave radiation and organic loading rate on methanogenic community and biogas production during fermentation of dairy wastewater. Bioresour Technol 129:308–314

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the University Science and Technology Innovation Team Construction Projects of Heilongjiang Province (2013TD003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, M., Li, P. et al. Trichloroethylene removal and bacterial variations in the up-flow anaerobic sludge blanket reactor in response to temperature shifts. Appl Microbiol Biotechnol 99, 6091–6102 (2015). https://doi.org/10.1007/s00253-015-6480-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6480-x

Keywords

Navigation