Skip to main content
Log in

Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet

  • Genomics, transcriptomics, proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Present study described rumen microbiome of Indian cattle (Kankrej breed) to better understand the microbial diversity and largely unknown functional capacity of the rumen microbiome under different dietary treatments. Kankrej cattle were gradually adapted to a high-forage diet (four animals with dry forage and four with green forage) containing 50 % (K1), 75 % (K2) to 100 % (K3) forage, and remaining concentrate diet, each for 6 weeks followed by analysis of rumen fiber adherent and fiber-free metagenomic community by shotgun sequencing using ion torrent PGM platform and EBI-metagenomics annotation pipeline. Taxonomic analysis indicated that rumen microbiome was dominated by Bacteroidetes followed by Firmicutes, Fibrobacter, Proteobacteria, and Tenericutes. Functional analysis based on gene ontology classified all reads in total 157 categories based on their functional role in biological, molecular, and cellular component with abundance of genes associated with hydrolase activity, membrane, transport, transferase, and different metabolism (such as carbohydrate and protein). Statistical analysis using STAMP revealed significant differences (P < 0.05) between solid and liquid fraction of rumen (in 65 categories), between all three treatments (in 56 categories), and between green and dry roughage (17 categories). Diet treatment also exerted significant difference in environmental gene tags (EGTs) involved in metabolic pathways for production of volatile fatty acids. EGTs for butyrate production were abundant in K2, whereas EGTs for propionate production was abundant during K1. Principal component analysis also demonstrated that diet proportion, fraction of rumen, and type of forage affected rumen microbiome at taxonomic as well as functional level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70:567–590

    CAS  PubMed  Google Scholar 

  • Bergman EN, Reid RS, Murray MG, Brockway JM, Whitelaw FG (1965) Interconversions and production of volatile fatty acids in the sheep rumen. Biochem J 97:53–58

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brulc JM, Antonopoulos DA, Miller ME, Wilson MK, Yannarell AC, Dinsdale EA, Edwards RE, Frank ED, Emerson JB, Wacklin P, Coutinhoj PM, Henrissatj B, Nelsoni KE, Whitea BA (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proc Natl Acad Sci U S A 106:1948–1953. doi:10.1073/pnas.0806191105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cotta MA (1992) Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch. Appl Environ Microbiol 58:48–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696. doi:10.1073/pnas.1005963107

    Article  PubMed Central  PubMed  Google Scholar 

  • de Menezes AB, Lewis E, O'Donovan M, O'Neill BF, Clipson N, Doyle EM (2011) Microbiome analysis of dairy cows fed pasture or total mixed ration diets. FEMS Microbiol Ecol 78:256–265. doi:10.1111/j.1574-6941.2011.01151.x

    Article  PubMed  Google Scholar 

  • Dehority BA (1991) Effects of microbial synergism on fibre digestion in the rumen. Proc Nutr Soc 50:149–159

    Article  CAS  PubMed  Google Scholar 

  • Fernando SC, Purvis HT 2nd, Najar FZ, Sukharnikov LO, Krehbiel CR, Nagaraja TG, Roe BA, Desilva U (2010) Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 76:7482–7490. doi:10.1128/AEM. 00388-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Firkins JL, Hristov AN, Hall MB, Varga GA, St-Pierre NR (2006) Integration of ruminal metabolism in dairy cattle. J Dairy Sci 89(Suppl 1):E31–E51. doi:10.3168/jds.S0022-0302(06)72362-1

    Article  PubMed  Google Scholar 

  • Flint HJ (1997) The rumen microbial ecosystem—some recent developments. Trends Microbiol 5:483–488. doi:10.1016/S0966-842X(97)01159-1

    Article  CAS  PubMed  Google Scholar 

  • Golder HM, Denman SE, McSweeney C, Celi P, Lean IJ (2014) Ruminal bacterial community shifts in grain-, sugar-, and histidine-challenged dairy heifers. J Dairy Sci 97:5131–5150. doi:10.3168/jds. 2014-8003

    Article  CAS  PubMed  Google Scholar 

  • Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6:e17447. doi:10.1371/journal.pone.0017447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan LL, Nkrumah JD, Basarab JA, Moore SS (2008) Linkage of microbial ecology to phenotype: correlation of rumen microbial ecology to cattle's feed efficiency. FEMS Microbiol Lett 288:85–91. doi:10.1111/j.1574-6968.2008.01343.x

    Article  CAS  PubMed  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. doi:10.1126/science.1200387

    Article  CAS  PubMed  Google Scholar 

  • Hook SE, Steele MA, Northwood KS, Wright AD, McBride BW (2011) Impact of high-concentrate feeding and low ruminal pH on methanogens and protozoa in the rumen of dairy cows. Microb Ecol 62:94–105. doi:10.1007/s00248-011-9881-0

    Article  CAS  PubMed  Google Scholar 

  • Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C, Jones P, Leinonen R, McAnulla C, Maguire E, Maslen J, Mitchell A, Nuka G, Oisel A, Pesseat S, Radhakrishnan R, Rocca-Serra P, Scheremetjew M, Sterk P, Vaughan D, Cochrane G, Field D, Sansone S (2014) EBI metagenomics—a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res 42:D600–D606. doi:10.1093/nar/gkt961

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jami E, Mizrahi I (2012) Composition and similarity of bovine rumen microbiota across individual animals. PLoS One 7:e33306. doi:10.1371/journal.pone.0033306

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jami E, Israel A, Kotser A, Mizrahi I (2013) Exploring the bovine rumen bacterial community from birth to adulthood. ISME J 7:1069–1079. doi:10.1038/ismej.2013.2

    Article  PubMed Central  PubMed  Google Scholar 

  • Kong Y, Teather R, Forster R (2010) Composition, spatial distribution, and diversity of the bacterial communities in the rumen of cows fed different forages. FEMS Microbiol Ecol 74:612–622. doi:10.1111/j.1574-6941.2010.00977.x

    Article  CAS  PubMed  Google Scholar 

  • Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, Attwood GT, McSweeney CS (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. FEMS Microbiol Rev 27:663–693

    Article  CAS  PubMed  Google Scholar 

  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181. doi:10.1093/dnares/dsm018

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence P, Kenny DA, Earley B, Crews DH Jr, McGee M (2011) Grass silage intake, rumen and blood variables, ultrasonic and body measurements, feeding behavior, and activity in pregnant beef heifers differing in phenotypic residual feed intake. J Anim Sci 89:3248–3261. doi:10.2527/jas. 2010-3774

    Article  CAS  PubMed  Google Scholar 

  • Lettat A, Hassanat F, Benchaar C (2013) Corn silage in dairy cow diets to reduce ruminal methanogenesis: effects on the rumen metabolically active microbial communities. J Dairy Sci 96:5237–5248. doi:10.3168/jds. 2012-6481

    Article  CAS  PubMed  Google Scholar 

  • Li RW, Li C (2006) Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells. BMC Genomics 7:234. doi:10.1186/1471-2164-7-234

    Article  PubMed Central  PubMed  Google Scholar 

  • Li CJ, Li RW (2008) Butyrate induced cell cycle arrest in bovine cells through targeting gene expression relevant to DNA replication apparatus. Gene Regul Syst Biol 2:113–123

    CAS  Google Scholar 

  • Macy JM, Probst I (1979) The biology of gastrointestinal bacteroides. Annu Rev Microbiol 33:561–594. doi:10.1146/annurev.mi.33.100179.003021

    Article  CAS  PubMed  Google Scholar 

  • McCann JC, Wiley LM, Forbes TD, Rouquette FM, Tedeschi LO (2014) Relationship between the rumen microbiome and residual feed intake-efficiency of Brahman bulls stocked on bermudagrass pastures. PloS One 9:e91864 doi:10.1371/journal.pone.0091864

  • Matsui H, Ogata K, Tajima K, Nakamura M, Nagamine T, Aminov RI, Benno Y (2000) Phenotypic characterization of polysaccharidases produced by four Prevotella type strains. Curr Microbiol 41:45–49

    Article  CAS  PubMed  Google Scholar 

  • Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721. doi:10.1093/bioinformatics/btq041

    Article  CAS  PubMed  Google Scholar 

  • Pitta DW, Pinchak E, Dowd SE, Osterstock J, Gontcharova V, Youn E, Dorton K, Yoon I, Min BR, Fulford JD, Wickersham TA, Malinowski DP (2010) Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb Ecol 59:511–522. doi:10.1007/s00248-009-9609-6

    Article  PubMed  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Daniel R, Mende LJ, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. doi:10.1038/nature08821

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE, White BA (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3:e2945. doi:10.1371/journal.pone.0002945

    Article  PubMed Central  PubMed  Google Scholar 

  • Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335. doi:10.1038/ismej.2014.14

    Article  CAS  PubMed  Google Scholar 

  • Russell JB, Muck RE, Weimer PJ (2009) Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen. FEMS Microbiol Ecol 67:183–197. doi:10.1111/j.1574-6941.2008.00633.x

    Article  CAS  PubMed  Google Scholar 

  • Sergeant MJ, Constantinidou C, Cogan TA, Bedford MR, Penn CW, Pallen MJ (2014) Extensive microbial and functional diversity within the chicken cecal microbiome. PLoS One 9:e91941. doi:10.1371/journal.pone.0091941

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh KM, Ahir VB, Tripathi AK, Ramani UV, Sajnani M, Koringa PG, Jakhesara S, Pandya PR, Rank DN, Murty DS, Kothari RK, Joshi CG (2012) Metagenomic analysis of Surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol Biol Rep 39:4841–4848. doi:10.1007/s11033-011-1278-0

    Article  CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2007) Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl Microbiol Biotechnol 75:165–174. doi:10.1007/s00253-006-0802-y

    Article  CAS  PubMed  Google Scholar 

  • Tajima K, Aminov RI, Nagamine T, Matsui H, Nakamura M, Benno Y (2001) Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl Environ Microbiol 67:2766–2774. doi:10.1128/AEM. 67.6.2766-2774.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh PJ (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484. doi:10.1038/nature07540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. doi:10.1038/nature05414

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3:213–223. doi:10.1016/j.chom.2008.02.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uden P, Rounsaville TR, Wiggans GR, Van Soest PJ (1982) The measurement of liquid and solid digesta retention in ruminants, equines and rabbits given timothy (Phleum pratense) hay. Br J Nutr 48:329–339

    Article  CAS  PubMed  Google Scholar 

  • Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lefsrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3:179–189. doi:10.1038/ismej.2008.108

    Article  CAS  PubMed  Google Scholar 

  • Walker AW, Duncan SH, Harmsen HJ, Holtrop G, Welling GW, Flint HJ (2008) The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities. Environ Microbiol 10:3275–3283. doi:10.1111/j.1462-2920.2008.01717.x

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Heazlewood SP, Krause DO, Florin TH (2003) Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95:508–520

    Article  CAS  PubMed  Google Scholar 

  • Whitford MF, Forster RJ, Beard CE, Gong J, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4:153–163. doi:10.1006/anae.1998.0155

    Article  CAS  PubMed  Google Scholar 

  • Wright AD, Klieve AV (2011) Does the complexity of the rumen microbial ecology preclude methane mitigation? Anim Feed Sci Technol 166–167:248–253

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Niche area of excellence program on Metagenomic analysis of ruminal microbes funded by Indian Council of Agriculture Research (ICAR), New Delhi, India

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya G. Joshi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 937 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, V., Patel, A.K., Parmar, N.R. et al. Characterization of the rumen microbiome of Indian Kankrej cattle (Bos indicus) adapted to different forage diet. Appl Microbiol Biotechnol 98, 9749–9761 (2014). https://doi.org/10.1007/s00253-014-6153-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6153-1

Keywords

Navigation