Skip to main content
Log in

Nocardiopsis species as potential sources of diverse and novel extracellular enzymes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Members of the genus Nocardiopsis are generally encountered in locations that are inherently extreme. They are present in frozen soils, desert sand, compost, saline or hypersaline habitats (marine systems, salterns and soils) and alkaline places (slag dumps, lake soils and sediments). In order to survive under these severe conditions, they produce novel and diverse enzymes that allow them to utilize the available nutrients and to thrive. The members of this genus are multifaceted and release an assortment of extracellular hydrolytic enzymes. They produce enzymes that are cold-adapted (α-amylases), thermotolerant (α-amylases and xylanases), thermoalkalotolerant (cellulases, β-1,3-glucanases), alkali-tolerant thermostable (inulinases), acid-stable (keratinase) and alkalophilic (serine proteases). Some of the enzymes derived from Nocardiopsis species act on insoluble polymers such as glucans (pachyman and curdlan), keratin (feathers and prion proteins) and polyhydroxyalkanoates. Extreme tolerance exhibited by proteases has been attributed to the presence of some amino acids (Asn and Pro) in loop structures, relocation of multiple salt bridges to outer regions of the protein or the presence of a distinct polyproline II helix. The range of novel enzymes is projected to increase in the forthcoming years, as new isolates are being continually reported, and the development of processes involving such enzymes is envisaged in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abou-Elela GM, El-Sersy NA, Wefky SH (2009) Statistical optimization of cold adapted α-amylase production by free and immobilized cells of Nocardiopsis aegyptia. J Appl Sci Res 5:286–292

    CAS  Google Scholar 

  • Al-Tai AM, Ruan JS (1994) Nocardiopsis halophila sp. nov., a new halophilic actinomycete isolated from soil. Int J Syst Bacteriol 44:474–478

    Google Scholar 

  • Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N (2012) Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS One 7(6):e39331. doi:10.1371/journal.pone.0039331

    PubMed  CAS  PubMed Central  Google Scholar 

  • Apichaisataienchote B, Altenbuchner J, Buchenauer H (2005) Isolation and identification of Streptomyces fradiae SU-1 from Thailand and protoplast transformation with the chitinase B gene from Nocardiopsis prasina OPC-131. Curr Microbiol 51:116–121

    PubMed  CAS  Google Scholar 

  • Bartelt-Hunt SL, Bartz JC (2013) Behavior of prions in the environment: implications for prion biology. PLoS Pathog 9(2):e1003113. doi:10.1371/journal. ppat.1003113

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bastawde KB (1992) Xylan structure, microbial xylanases, and their mode of action. World J Microbiol Biotechnol 8:353–368

    PubMed  CAS  Google Scholar 

  • Brandelli A (2008) Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Technol 1:105–116

    Google Scholar 

  • Brandelli A, Daroit DJ, Riffel A (2010) Biochemical features of microbial keratinases and their production and applications. Appl Microbiol Biotechnol 85:1735–1750

    PubMed  CAS  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Google Scholar 

  • Cavalcanti MTH, Teixeira MFS, Lima Filho JL, Porto ALF (2004) Partial purification of new milk-clotting enzyme produced by Nocardiopsis sp. Bioresour Technol 93:29–35

    PubMed  CAS  Google Scholar 

  • Cavalcanti MTH, Martinez CR, Furtado VC, Neto BB, Teixeira MF, Lima Filho JL, Porto ALF (2005) Milk-clotting protease production by Nocardiopsis sp. in an inexpensive medium. World J Microbiol Biotechnol 21:151–154

    CAS  Google Scholar 

  • Cavicchioli R, Charlton T, Ertan H, Mohd Omar S, Siddiqui KS, Williams TJ (2011) Biotechnological uses of enzymes from psychrophiles. Microb Biotechnol 4:449–460

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chakraborty S, Jana S, Gandhi A, Sen KK, Zhiang W, Kokare C (2014) Gellan gum microspheres containing a novel alpha-amylase from marine Nocardiopsis sp. strain B2 for immobilization. Int J Biol Macromol 70:292–299

    PubMed  CAS  Google Scholar 

  • Chen YG, Wang YX, Zhang YQ, Tang SK, Liu ZX, Xiao HD, Xu LH, Cui XL, Li WJ (2009) Nocardiopsis litoralis sp. nov., a halophilic marine actinomycete isolated from a sea anemone. Int J Syst Evol Microbiol 59:2708–2713

    PubMed  CAS  Google Scholar 

  • Chen YG, Zhang YQ, Tang SK, Liu ZX, Xu LH, Zhang LX, Li WJ (2010) Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from saline soil. Antonie Van Leeuwenhoek 98:31–38

    PubMed  Google Scholar 

  • Cheng R, Chen J, Yu X, Wang Y, Wang S, Zhang J (2013) Recombinant production and characterization of full-length and truncated β-1,3-glucanase PglA from Paenibacillus sp. S09. BMC Biotechnol 13:105

    PubMed  CAS  Google Scholar 

  • Chun J, Bae KS, Moon EY, Jung SO, Lee HK, Kim SJ (2000) Nocardiopsis kunsanensis sp. nov., a moderately halophilic actinomycete isolated from a saltern. Int J Syst Evol Microbiol 50:1909–1913

    PubMed  CAS  Google Scholar 

  • de Champdore M, Staiano M, Rossi M, D’Auria S (2007) Proteins from extremophiles as stable tools for advanced biotechnological applications of high social interest. J R Soc Interface 4:183–191

    PubMed  PubMed Central  Google Scholar 

  • Dixit VS, Pant A (2000a) Comparative characterization of two serine endopeptidases from Nocardiopsis sp. NCIM 5124. Biochim Biophys Acta 1523:261–268

    PubMed  CAS  Google Scholar 

  • Dixit VS, Pant A (2000b) Hydrocarbon degradation and protease production by Nocardiopsis sp. NCIM 5124. Lett Appl Microbiol 30:67–69

    PubMed  CAS  Google Scholar 

  • Duarte AS, Correia A, Esteves AC (2014) Bacterial collagenases—a review. Crit Rev Microbiol. doi:10.3109/1040841X.2014.904270

    PubMed  Google Scholar 

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29C:116–123

    PubMed  Google Scholar 

  • Fang C, Zhang J, Pang H, Li Y, Xin Y, Zhang Y (2011) Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol Microbiol 61:2640–2645

    PubMed  CAS  Google Scholar 

  • Farrell D, Webb H, Johnston MA, Poulsen TA, O’Meara F, Christensen LL, Beier L, Borchert TV, Nielsen JE (2012) Toward fast determination of protein stability maps: experimental and theoretical analysis of mutants of a Nocardiopsis prasina serine protease. Biochemistry 51:5339–5347

    PubMed  CAS  Google Scholar 

  • Feller G (2013) Psychrophilic enzymes: from folding to function and biotechnology. Scientifica (Cairo). doi:10.1155/2013/512840

    Google Scholar 

  • Fibriansah G, Masuda S, Hirose R, Hamada K, Tanaka N, Nakamura S, Kumasaka T (2006) Crystallization and preliminary crystallographic analysis of endo-1,3-beta-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Acta Crystallogr Sect F: Struct Biol Cryst Commun 62:20–22

    CAS  Google Scholar 

  • Fibriansah G, Masuda S, Koizumi N, Nakamura S, Kumasaka T (2007) The 1.3 A crystal structure of a novel endo-beta-1,3-glucanase of glycoside hydrolase family 16 from alkaliphilic Nocardiopsis sp. strain F96. Proteins 69:683–690

    PubMed  CAS  Google Scholar 

  • Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97:993–1004

    PubMed  CAS  Google Scholar 

  • Ghanem NB, Mabrouk ME, Sabry SA, El-Badan DE (2005) Degradation of polyesters by a novel marine Nocardiopsis aegyptia sp. nov.: application of Plackett-Burman experimental design for the improvement of PHB depolymerase activity. J Gen Appl Microbiol 51:151–158

    PubMed  CAS  Google Scholar 

  • Gohel SD, Singh SP (2012) Purification strategies, characteristics and thermodynamic analysis of a highly thermostable alkaline protease from a salt-tolerant alkaliphilic actinomycete, Nocardiopsis alba OK-5. J Chromatogr B Anal Technol Biomed Life Sci 889–890:61–68

    Google Scholar 

  • Grund E, Kroppenstedt RM (1990) Chemotaxonomy and numerical taxonomy of the genus Nocardiopsis meyer 1976. Int J Syst Bacteriol 40:5–11

    Google Scholar 

  • Gupta R, Ramnani P (2006) Microbial keratinases and their prospective applications: an overview. Appl Microbiol Biotechnol 70:21–33

    PubMed  CAS  Google Scholar 

  • Gupta R, Rajput R, Sharma R, Gupta N (2013a) Biotechnological applications and prospective market of microbial keratinases. Appl Microbiol Biotechnol 97:9931–9940

    PubMed  CAS  Google Scholar 

  • Gupta R, Sharma R, Beg QK (2013b) Revisiting microbial keratinases: next generation proteases for sustainable biotechnology. Crit Rev Biotechnol 33:216–228

    PubMed  CAS  Google Scholar 

  • Hamedi J, Mohammadipanah F, Ventosa A (2013) Systematic and biotechnological aspects of halophilic and halotolerant actinomycetes. Extremophiles 17:1–13

    PubMed  CAS  Google Scholar 

  • Hashem AM (1999) Optimization of milk-clotting enzyme productivity by Penicillium oxalicum. Bioresour Technol 70:203–207

    CAS  Google Scholar 

  • Hozzein WN, Goodfellow M (2008) Nocardiopsis arabia sp. nov., a halotolerant actinomycete isolated from a sand-dune soil. Int J Syst Evol Microbiol 58:2520–2524

    PubMed  CAS  Google Scholar 

  • Jacob M, Jaros D, Rohm H (2011) Recent advances in milk clotting enzymes. Int J Dairy Technol 64:14–33

    CAS  Google Scholar 

  • Johnson-Rollings AS, Wright H, Masciandaro G, Macci C, Doni S, Calvo-Bado LA, Slade SE, Plou CV, Wellington EMH (2014) Exploring the functional soil-microbe interface and exoenzymes through soil metaexoproteomics. ISME J. doi:10.1038/ismej.2014.130

    PubMed  PubMed Central  Google Scholar 

  • Jose PA, Jebakumar SR (2012) Phylogenetic diversity of actinomycetes cultured from coastal multipond solar saltern in Tuticorin, India. Aquat Biosyst 8:23–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kalum L (2008) Method for producing a yeast extract. WO 2008077890:A1

    Google Scholar 

  • Kango N, Jain SC (2011) Production and properties of microbial inulinases: recent advances. Food Biotechnol 25:165–212

    CAS  Google Scholar 

  • Kanth SV, Venba R, Madhan B, Chandrababu NK, Sadulla S (2008) Studies on the influence of bacterial collagenase in leather dyeing. Dyes Pigments 76:338–347

    CAS  Google Scholar 

  • Kelch BA, Eagen KP, Erciyas FP, Humphris EL, Thomason AR, Mitsuiki S, Agard DA (2007) Structural and mechanistic exploration of acid resistance: kinetic stability facilitates evolution of extremophilic behavior. J Mol Biol 368:870–883

    PubMed  CAS  Google Scholar 

  • Kerckhoffs DAJM, Hornstra G, Mensink RP (2003) Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr 78:221–227

    PubMed  CAS  Google Scholar 

  • Kim JS, Sapkota K, Park SE, Choi BS, Kim S, Hiep NT, Kim CS, Choi HS, Kim MK, Chun HS, Park Y, Kim SJ (2006) A fibrinolytic enzyme from the medicinal mushroom Cordyceps militaris. J Microbiol 44:622–631

    PubMed  CAS  Google Scholar 

  • Koizumi N, Isoda Y, Maeda K, Masuda S, Fibriansah G, Kumasaka T, Yatsunami R, Fukui T, Nakamura S (2007) Characterization of Nocardiopsis beta-1,3-glucanase with additional carbohydrate-binding domains. Nucleic Acids Symp Ser (Oxf) 51:459–460

    Google Scholar 

  • Koizumi N, Masuda S, Maeda K, Isoda Y, Yatsunami R, Fukui T, Nakamura S (2009) Additional carbohydrate-binding modules enhance the insoluble substrate-hydrolytic activity of beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. F96. Biosci Biotechnol Biochem 73:1078–1082

    PubMed  CAS  Google Scholar 

  • Krishna SH, Srinivas ND, Raghavarao KS, Karanth NG (2002) Reverse micellar extraction for downstream processing of proteins/enzymes. Adv Biochem Eng Biotechnol 75:119–183

    PubMed  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzym Res. doi:10.4061/2011/280696

    Google Scholar 

  • Kumar V, Bharti A, Negi YK, Gusain O, Pandey P, Bisht GS (2012) Screening of actinomycetes from earthworm castings for their antimicrobial activity and industrial enzymes. Braz J Microbiol 43:205–214

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lacey J, Goodfellow M (1975) A novel actinomycete from sugar-cane bagasse: Saccharopolyspora hirsuta gene et sp. nov. J Gen Microbiol 88:75–85

    PubMed  CAS  Google Scholar 

  • Langveld JP, Wang JJ, Van de Wiel DF, Shih JC, Garssen GJ, Bossers A, Shih JCH (2003) Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. J Infect Dis 188:1782–1789

    Google Scholar 

  • Laroche C, Michaud P (2007) New developments and prospective applications for β-1,3-glucans. Recent Patents Biotechnol 1:59–73

    CAS  Google Scholar 

  • Lassen SF, Sjoeholm C, Oestergaard PR, Fischer M (2010) Nocardiopsis proteases. EP 2258839:A1

    Google Scholar 

  • Lazarova Z, Tonova K (1999) Integrated reversed micellar extraction and stripping of α-amylase. Biotechnol Bioeng 63:583–592

    PubMed  CAS  Google Scholar 

  • Li MG, Li WJ, Xu P, Cui XL, Xu LH, Jiang CL (2003) Nocardiopsis xinjiangensis sp. nov., a halophilic actinomycete isolated from a saline soil sample in China. Int J Syst Evol Microbiol 53:317–321

    PubMed  CAS  Google Scholar 

  • Li WJ, Kroppenstedt RM, Wang D, Tang SK, Lee JC, Park DJ, Kim CJ, Xu LH, Jiang CL (2006) Five novel species of the genus Nocardiopsis isolated from hypersaline soils and emended description of Nocardiopsis salina. Int J Syst Evol Microbiol 56:1089–1096

    PubMed  CAS  Google Scholar 

  • Li J, Yang J, Zhu WY, He J, Tian XP, Xie Q, Zhang S, Li WJ (2012) Nocardiopsis coralliicola sp. nov., isolated from the gorgonian coral, Menella praelonga. Int J Syst Evol Microbiol 62:1653–1658

    PubMed  CAS  Google Scholar 

  • Li HW, Zhi XY, Yao JC, Zhou Y, Tang SK, Klenk HP, Zhao J, Li WJ (2013) Comparative genomic analysis of the genus Nocardiopsis provides new insights into its genetic mechanisms of environmental adaptability. PLoS ONE 8(4):e61528. doi:10.1371/journal.pone.0061528

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lu WD, Li AX, Guo QL (2014) Production of novel alkalitolerant and thermostable inulinase from marine actinomycete Nocardiopsis sp. DN-K15 and inulin hydrolysis by the enzyme. Ann Microbiol 64:441–449

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:3506–3577

    Google Scholar 

  • Lynglev GB, Nielsen PM (2009) Method for producing a wheat protein hydrolysate. WO 2009147103:A2

    Google Scholar 

  • Manzi P, Pizzoferrato L (2000) Beta-glucans in edible mushrooms. Food Chem 68:315–318

    CAS  Google Scholar 

  • Masih EI, Paul B (2002) Secretion of β-1,3-glucanases by the yeast Pichia membranifaciens and its possible role in the biocontrol of Botrytis cinerea causing grey mold disease of the grapevine. Curr Microbiol 44:391–395

    PubMed  CAS  Google Scholar 

  • Masuda S, Endo K, Hayami T, Fukazawa T, Yatsunami R, Nakamura S (2003) Cloning and expression of bglF gene from alkaliphilic Nocardiopsis sp. strain F96. Nucleic Acids Res Suppl 3:317–318

    PubMed  CAS  Google Scholar 

  • Masuda S, Endo K, Koizumi N, Hayami T, Fukazawa T, Yatsunami R, Fukui T, Nakamura S (2006) Molecular identification of a novel beta-1,3-glucanase from alkaliphilic Nocardiopsis sp. strain F96. Extremophiles 10:251–255

    PubMed  CAS  Google Scholar 

  • Matsui T, Kumasaka T, Endo K, Sato T, Nakamura S, Tanaka N (2004) Crystallization and preliminary X-ray crystallographic analysis of chitinase F1 (ChiF1) from the alkaliphilic Nocardiopsis sp. strain F96. Acta Crystallogr D Biol Crystallogr 60:2016–2018

    PubMed  Google Scholar 

  • Meena B, Rajan LA, Vinithkumar NV, Kirubagaran R (2013) Novel marine actinobacteria from emerald Andaman and Nicobar Islands: a prospective source for industrial and pharmaceutical byproducts. BMC Microbiol 13:145–161

    PubMed  PubMed Central  Google Scholar 

  • Mitsuiki S, Sakai M, Moriyama Y, Goto M, Furukawa K (2002) Purification and some properties of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 66:164–167

    PubMed  CAS  Google Scholar 

  • Mitsuiki S, Hui Z, Matsumoto D, Sakai M, Moriyama Y, Furukawa K, Kanouchi H, Oka T (2006) Degradation of PrP(Sc) by keratinolytic protease from Nocardiopsis sp. TOA-1. Biosci Biotechnol Biochem 70:1246–1248

    PubMed  CAS  Google Scholar 

  • Moreira KA, Albuquerque BF, Teixeira MFS, Porto ALF, Lima-Filho JL (2002) Application of protease from Nocardiopsis sp. as a laundry detergent additive. World J Microbiol Biotechnol 18:307–312

    CAS  Google Scholar 

  • Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348

    PubMed  Google Scholar 

  • Nawani NN, Kapadnis BP (2003) Chitin degrading potential of bacteria from extreme and moderate environment. Indian J Exp Biol 41:248–254

    PubMed  CAS  Google Scholar 

  • Negro MJ, Ballesteros I, Manzanares P, Oliva JM, Sáez F, Ballesteros M (2006) Inulin-containing biomass for ethanol production carbohydrate extraction and ethanol fermentation. Appl Biochem Biotechnol 129–132:922–932

    PubMed  Google Scholar 

  • Niehaus F, Bertoldo C, Kahler M, Antranikian G (1999) Extremophiles as a source of novel enzymes for industrial application. Appl Microbiol Biotechnol 51:711–729

    PubMed  CAS  Google Scholar 

  • Ningthoujam DS, Kshetri P, Sanasam S, Nimaichand S (2009) Screening, identification of best producers and optimization of extracellular proteases from moderately halophilic alkalithermotolerant indigenous actinomycetes. World Appl Sci J 7:907–916

    CAS  Google Scholar 

  • Olano C, Méndez C, Salas JA (2009) Antitumor compounds from marine actinomycetes. Mar Drugs 7:210–248

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perona JJ, Craik CS (1997) Evolutionary divergence of substrate specificity within the chymotrypsin-like serine protease fold. J Biol Chem 272:29987–29990

    PubMed  CAS  Google Scholar 

  • Phan TTB, Ta TD, Nguyen DTX, Van Den Broek LAM, Duong GTH (2011) Purification and characterization of novel fibrinolytic proteases as potential antithrombotic agents from earthworm Perionyx excavates. AMB Express 1:26

    PubMed  PubMed Central  Google Scholar 

  • Porto TS, Monteiro TIR, Moreira KA, Lima-Filho JL, Silva MPC, Porto ALF, Carneiro-da-Cunha MG (2005) Liquid–liquid extraction of an extracellular alkaline protease from fermentation broth using aqueous two-phase and reversed micelles systems. World J Microbiol Biotechnol 21:655–659

    CAS  Google Scholar 

  • Qiao J, Chen L, Li Y, Wang J, Zhang W, Chen S (2012) Whole-genome sequence of Nocardiopsis alba strain ATCC BAA-2165, associated with honeybees. J Bacteriol 194:6358–6359

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rainey FA, Rainey NW, Kroppenstedt RM, Stackebrandt E (1996) The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092

    PubMed  CAS  Google Scholar 

  • Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    CAS  Google Scholar 

  • Rohamare SB, Dixit V, Nareddy PK, Sivaramakrishna D, Swamy MJ, Gaikwad SM (2013) Polyproline fold—in imparting kinetic stability to an alkaline serine endopeptidase. Biochim Biophys Acta 1834:708–716

    PubMed  CAS  Google Scholar 

  • Rutala WA, Weber DJ (2010) Guideline for disinfection and sterilization of prion contaminated medical instruments. Infect Control Hosp Epidemiol 31:107–117

    PubMed  Google Scholar 

  • Saha S, Dhanasekaran D, Shanmugapriya S, Latha S (2013) Nocardiopsis sp. SD5: a potent feather degrading rare actinobacterium isolated from feather waste in Tamil Nadu, India. J Basic Microbiol 53:608–616

    PubMed  CAS  Google Scholar 

  • Saratale GD, Oh SE (2011) Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU Biodegrad 22:905–919

    CAS  Google Scholar 

  • Schippers A, Bosecker K, Willscher S, Spröer C, Schumann P, Kroppenstedt RM (2002) Nocardiopsis metallicus sp. nov., a metal-leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol 52:2291–2295

    PubMed  CAS  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2006) Production of inulinase from Kluyveromyces marxianus YS-1 using root extract of Asparagus racemosus. Process Biochem 41:1703–1707

    CAS  Google Scholar 

  • Singh RS, Dhaliwal R, Puri M (2007) Production of high fructose syrup from Asparagus inulin using immobilized exoinulinase from Kluyveromyces marxianus YS-1. J Ind Microbiol Biotechnol 34:649–655

    PubMed  CAS  Google Scholar 

  • Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry—a review. Braz J Microbiol 41:850–861

    PubMed  PubMed Central  Google Scholar 

  • Stamford TL, Stamford NP, Coelho LC, Araújo JM (2001) Production and characterization of a thermostable alpha-amylase from Nocardiopsis sp. endophyte of yam bean. Bioresour Technol 76:137–141

    PubMed  CAS  Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  • Sun H, Lapidus A, Nolan M, Lucas S, Rio TGD, Tice H, Cheng JF, Tapia R, Han C, Goodwin L, Pitluck S, Pagani I, Ivanova N, Mavromatis K, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Hauser L, Yun-Juan CYJ, Jeffries CD, Djao ODN, Rohde M, Sikorski J, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP (2010) Complete genome sequence of Nocardiopsis dassonvillei type strain (IMRU 509T). Stand Genomic Sci 3:325–336

    PubMed  PubMed Central  Google Scholar 

  • Suriyamongkol P, Weselake R, Narine S, Moloney M, Shah S (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants—a review. Biotechnol Adv 25:148–175

    PubMed  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tan H, Deng Z, Cao L (2009) Isolation and characterization of actinomycetes from healthy goat faeces. Lett Appl Microbiol 49:248–253

    PubMed  CAS  Google Scholar 

  • Tsujibo H, Sakamoto T, Nishino N, Hasegawa T, Inamori Y (1990a) Purification and properties of three types of xylanases produced by an alkalophilic actinomycete. J Appl Bacteriol 69:398–405

    CAS  Google Scholar 

  • Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y (1990b) Purification and characterization of two types of alkaline serine proteases produced by an alkalophilic actinomycete. J Appl Bacteriol 69:520–529

    PubMed  CAS  Google Scholar 

  • Tsujibo H, Miyamoto K, Hasegawa T, Inamori Y (1990c) Amino acid compositions and partial sequences of two types of alkaline serine proteases from Nocardiopsis dassonvillei subsp. prasina OPC-210. Agric Biol Chem 54:2177–2179

    PubMed  CAS  Google Scholar 

  • Tsujibo H, Sakamoto T, Miyamoto K, Hasegawa T, Fujimoto M, Inamori Y (1991) Amino acid compositions and partial sequences of xylanases from a new subspecies, Nocardiopsis dassonvillei subsp. alba OPC-18. Agric Biol Chem 55:2173–2174

    PubMed  CAS  Google Scholar 

  • Tsujibo H, Kubota T, Yamamoto M, Miyamoto K, Inamori Y (2003) Characterization of chitinase genes from an alkaliphilic actinomycete, Nocardiopsis prasina OPC-131. Appl Environ Microbiol 69:894–900

    PubMed  CAS  PubMed Central  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nature Rev Drug Discov 5:785–799

    CAS  Google Scholar 

  • Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch converting enzymes of alpha amylase family. J Biotechnol 94:137–155

    PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    PubMed  CAS  PubMed Central  Google Scholar 

  • Walker D, Ledesma P, Delgado OD, Breccia JD (2006) High endo-β-1,4-D-glucanase activity in a broad pH range from the alkali-tolerant Nocardiopsis sp. SES28. World J Microbiol Biotechnol 22:761–764

    CAS  Google Scholar 

  • Xu S, Yan L, Zhang X, Wang C, Feng G, Li J (2014) Nocardiopsis fildesensis sp. nov., an actinomycete isolated from soil. Int J Syst Evol Microbiol 64:174–179

    PubMed  CAS  Google Scholar 

  • Yamamura H, Ohkubo SY, Ishida Y, Otoguro M, Tamura T, Hayakawa M (2010) Nocardiopsis nikkonensis sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 60:2967–2971

    PubMed  CAS  Google Scholar 

  • Yan X, Yan H, Liu Z, Liu X, Mo H, Zhang L (2011) Nocardiopsis yanglingensis sp. nov., a thermophilic strain isolated from a compost of button mushrooms. Antonie Van Leeuwenhoek 100:415–419

    PubMed  Google Scholar 

  • Yang R, Zhang LP, Guo LG, Shi N, Lu Z, Zhang X (2008) Nocardiopsis valliformis sp. nov., an alkaliphilic actinomycete isolated from alkali lake soil in China. Int J Syst Evol Microbiol 58:1542–1546

    PubMed  CAS  Google Scholar 

  • Zhang JW, Zeng RY (2007) Psychrotrophic amylolytic bacteria from deep sea sediment of Prydz Bay, Antarctic: diversity and characterization of amylases. World J Microbiol Biotechnol 23:1551–1557

    CAS  Google Scholar 

  • Zhang JW, Zeng RY (2008) Purification and characterization of a cold-adapted alpha-amylase produced by Nocardiopsis sp. 7326 isolated from Prydz Bay, Antarctic. Mar Biotechnol (NY) 10:75–82

    Google Scholar 

Download references

Acknowledgments

All authors thank the University Grants Commission for funding under UPE Phase II. TB thanks CSIR, India, for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Smita Zinjarde or Vaishali Javdekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennur, T., Kumar, A.R., Zinjarde, S. et al. Nocardiopsis species as potential sources of diverse and novel extracellular enzymes. Appl Microbiol Biotechnol 98, 9173–9185 (2014). https://doi.org/10.1007/s00253-014-6111-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6111-y

Keywords

Navigation