Skip to main content
Log in

The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9

  • Environmental biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a major soil and groundwater contaminant. Organisms such as Gordonia sp. KTR9, capable of degrading RDX and using it as an N source, may prove useful for bioremediation of contaminated sites. XplA is a cytochrome P450 monooxygenase responsible for RDX degradation. Expression of xplA in KTR9 was not induced by RDX but was strongly induced (50-fold) during N-limited growth. When glnR, encoding a regulatory protein affecting N assimilation in diverse Actinobacteria, was deleted from KTR9, the bacterium lost the ability to use nitrate, nitrite, and RDX as N sources. Deletion of glnR also abolished the inhibition of xplA expression by nitrite. Our results confirm the essential role of GlnR in regulating assimilation of nitrite, but there was no evidence for a direct role of GlnR in regulating XplA expression. Rather, the general availability of nitrogen repressed XplA expression. We conclude that the inability of the glnR mutant to use RDX as an N source was due to its inability to assimilate nitrite, an intermediate in the assimilation of nitrogen from RDX. Regulation of XplA does not seem adaptive for KTR9, but it is important for RDX bioremediation with KTR9 or similar bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amon J, Brau T, Grimrath A, Hanssler E, Hasselt K, Holler M, Jessberger N, Ott L, Szokol J, Titgemeyer F, Burkovski A (2008) Nitrogen control in Mycobacterium smegmatis: nitrogen-dependent expression of ammonium transport and assimilation proteins depends on the OmpR-type regulator GlnR. J Bacteriol 190(21):7108–7116. doi:10.1128/JB.00855-08

  • Andeer PF, Stahl DA, Bruce NC, Strand SE (2009) Lateral transfer of genes for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation. Appl Environ Microbiol 75(10):3258–3262. doi:10.1128/AEM.02396-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Balkwill DL, Ghiorse WC (1985) Characterization of subsurface bacteria associated with two shallow aquifers in Oklahoma. Appl Environ Microbiol 50(3):580–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bauchop T, Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J Gen Microbiol 23(3):457–469

    Article  CAS  PubMed  Google Scholar 

  • Bio-Rad (2005) Real-time PCR applications guide. Bio-Rad Laboratories, Inc., Hercules

    Google Scholar 

  • Chen G, Xia M, Lei W, Wang F, Gong X (2013) A study of the solvent effect on the morphology of RDX crystal by molecular modeling method. J Mol Model 19(12):5397–5406. doi:10.1007/s00894-013-2033-3

    Article  CAS  PubMed  Google Scholar 

  • Clausen J, Robb J, Curry D, Korte N (2004) A case study of contaminants on military ranges: Camp Edwards, Massachusetts, USA. Environ Pollut 129(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Coleman NV, Nelson DR, Duxbury T (1998) Aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a nitrogen source by a Rhodococcus sp., strain DN22. Soil Biol Biochem 30(8–9):1159–1167

  • Coleman NV, Spain JC, Duxbury T (2002) Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 93(3):463–472

  • Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46(2):331–347. doi:10.1046/j.1365-2958.2002.03150.x

  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J (2002) Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol 68(1):166–172. doi:10.1128/AEM.68.1.166-172.2002

  • Indest KJ, Crocker FH, Athow R (2007) A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. J Microbiol Methods 68(2):267–74

    Article  CAS  PubMed  Google Scholar 

  • Indest KJ, Jung CM, Chen HP, Hancock D, Florizone C, Eltis LD, Crocker FH (2010) Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol 76(19):6329–6337. doi:10.1128/AEM.01217-10

  • Indest KJ, Hancock DE, Jung CM, Eberly JO, Mohn WW, Eltis LD, Crocker FH (2013) Role of nitrogen limitation in transformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by Gordonia sp. strain KTR9. Appl Environ Microbiol 79(5):1746–1750. doi:10.1128/AEM.03905-12

  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 104(43):16822–16827. doi:10.1073/pnas.0705110104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jenkins TF, Walsh ME, Thorne PG, Miyares PH, Ranney TA, Grant CL, Esparza JR (1998) Site characterization for explosives contamination at a military firing range impact area. U.S. Army Cold Regions Research and Engineering Laboratory. Special report 98–9 US Army Cold Regions Research and Engineering Laboratory, Hanover, NH

  • Jung CM, Crocker FH, Eberly JO, Indest KJ (2011) Horizontal gene transfer as a mechanism of dissemination of RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol 110(6):1449–1459. doi:10.1111/j.1365-2672.2011.04995.x

    Article  CAS  PubMed  Google Scholar 

  • Kitts CL, Cunningham DP, Unkefer PJ (1994) Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol 60(12):4608–4611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Ackermann B, Schmidt M, Wohlleben W, Ehlers S, Geffers R, Reuther J, Bange FC (2009) The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155(Pt 4):1332–1339. doi:10.1099/mic.0.023275-0

  • Maniatis T, Sambrook J, Fritsch EF (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • McCormick NG, Cornell JH, Kaplan AM (1981) Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol 42(5):817–823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nejidat A, Kafka L, Tekoah Y, Ronen Z (2008) Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation 19(3):313–320. doi:10.1007/s10532-007-9137-3

  • Pennington JC, Jenkins TF, Thiboutot S, Ampleman G, Clausen J, Hewitt AD, Lewis J, Walsh ME, Ranney TA, Silverblatt B, Marois A, Gagnon A, Brousseau P, Zufelt JE, Poe K, Bouchard M, Martel R, Walker DD, Ramsey CA, Hayes CA, Yost SL, Bjella KL, Trepanier L, Berry TE, Lambert DJ, Dube´ P, Perron NM. (2005) Distribution and fate of energetics on DoD test and training ranges: report 5. US Army Engineer Research and Development Center ERDC TR-05-2 US Army Engineer Research and Development Center, Vicksburg, MS

  • Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175. doi:10.1186/1471-2164-12-175

  • Schoenmuth B, Mueller JO, Scharnhorst T, Schenke D, Buttner C, Pestemer W (2013) Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environ Sci Pollut Res Int 21(5):3733–3743. doi:10.1007/s11356-013-2306-5

    Article  PubMed  Google Scholar 

  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC (2002) Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol 68(10):4764–4771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC (2008) The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol 74(14):4550–4552. doi:10.1128/AEM.00391-08

  • Thompson KT, Crocker FH, Fredrickson HL (2005) Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol 71(12):8265–8272. doi:10.1128/AEM.71.12.8265-8272.2005

  • Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67(4):861–880. doi:10.1111/j.1365-2958.2007.06092.x

  • U.S. EPA (2006) 2006 edition of the drinking water standards and health advisories. EPA 822-R-06-13 Office of Water, Washington, DC

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2001) Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid Delta1-dehydrogenase, in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS Microbiol Lett 205(2):197–202

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    Article  CAS  Google Scholar 

  • Young DM, Unkefer PJ, Ogden KL (1997) Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng 53(5):515–522. doi:10.1002/(SICI)1097-0290(19970305)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part through grants from Genome BC, the Strategic Environmental Research and Development Program (Project ER-1609), and the US Army Corps of Engineers Environmental Quality Program. Views, opinions, and/or findings contained herein are those of the authors and should not be construed as an official Department of the Army position or decision unless so designated by other official documentation. We thank Christine Florizone for guidance in chemical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William W. Mohn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, SH., Reuther, J., Liu, J. et al. The essential role of nitrogen limitation in expression of xplA and degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in Gordonia sp. strain KTR9. Appl Microbiol Biotechnol 99, 459–467 (2015). https://doi.org/10.1007/s00253-014-6013-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-6013-z

Keywords

Navigation