Skip to main content

Advertisement

Log in

Oral administration of whole dihomo-γ-linolenic acid-producing Saccharomyces cerevisiae suppresses cutaneous inflammatory responses induced by croton oil application in mice

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Polyunsaturated fatty acids have been attracting considerable interest because of their many biological activities and important roles in human health and nutrition. Dihomo-γ-linolenic acid (DGLA; C20: 3n-6) is known to have an anti-inflammatory activity, but its range of effects was not well studied because of its limited natural sources. Taking advantage of genetic tractability and increasing wealth of accessible data of Saccharomyces cerevisiae, we have previously constructed a DGLA-producing yeast strain by introducing two types of desaturase and one elongase genes to convert endogenous oleic acid (C18:1n-9) to DGLA. In this study, we investigated the efficacy of oral intake of heat-killed whole DGLA-producing yeast cells in the absence of lipid purification on cutaneous inflammation. Topical application of croton oil to mouse ears induces ear swelling in parallel with the increased production of chemokines and accumulation of infiltrating cells into the skin sites. These inflammatory reactions were significantly suppressed in a dose-dependent manner by oral intake of the DGLA-producing yeast cells for only 7 days. This suppression was not observed by the intake of the γ-linolenic acid-producing (C18:3n-6, an immediate precursor of DGLA) yeast, indicating DGLA itself suppressed the inflammation. Further analysis demonstrated that DGLA exerted an anti-inflammatory effect via prostaglandin E1 formation because naproxen, a cyclooxygenase inhibitor, attenuated the suppression. Since 25-fold of purified DGLA compared with that provided as a form of yeast was not effective, oral administration of the whole DGLA-producing yeast is considered to be a simple but efficient method to suppress inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bell JG, Tocher DR, Sargent JR (1994) Effect of supplementation with 20:3(n-6), 20:4(n-6) and 20:5(n-3) on the production of prostaglandins E and F of the 1-, 2- and 3-series in turbot (Scophthalmus maximus) brain astroglial cells in primary culture. Biochim Biophys Acta 1211:335–342

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Gettner S, Somerville C (1999) Genetic engineering of plant lipids. Annu Rev Nutr 19:197–216

    Article  PubMed  CAS  Google Scholar 

  • Daniel J, Leach MW, Kuhn R, Rajewsky K, Muller W, Davidson NJ, Rennick D (1995) Interleukin 10 but not interleukin 4 is a natural suppressant of cutaneous inflammatory responses. J Exp Med 182:99–108

    Article  Google Scholar 

  • Das UN (2006) Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J 1:420–439

    Article  PubMed  CAS  Google Scholar 

  • Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoids biology. Science 294:1871–1875

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Yoon WK, Lee H, Han S-B, Lee K, Park S-K, Yang K-H, Kim HM, Kang JS (2007) Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice. Int Immunopharmacol 7:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Horrobin DF (2000) Essential fatty acid metabolism and its modification in atopic eczema. Am J Clin Nutr 71(1 Suppl):367S–372S

    PubMed  CAS  Google Scholar 

  • Inoue R, Nishio A, Fukushima Y, Ushida K (2007) Oral treatment with probiotic Lactobacillus johnsonii NCC533 (La1) for a specific part of the weaning period prevents the development of atopic dermatitis induced after maturation in model mice, NC/Nga. Br J Dermatol 156:499–509

    Article  PubMed  CAS  Google Scholar 

  • Kainou K, Kamisaka Y, Kimura K, Uemura H (2006) Isolation of Δ12 and ω3-fatty acid desaturase genes from the yeast Kluyveromyces lactis and their heterologous expression to produce linoleic and α-linolenic acids in Saccharomyces cerevisiae. Yeast 23:605–612

    Article  PubMed  CAS  Google Scholar 

  • Kano H, Kita J, Makino S, Ikegami S, Itoh H (2013) Oral administration of Lactobacillus delbrueckii subspecies bulgaricus OLL1073R-1 suppresses inflammation by decreasing interleukin-6 responses in a murine model of atopic dermatitis. J Dairy Sci 96:3525–3534

    Article  PubMed  CAS  Google Scholar 

  • Kawashima H, Tateishi N, Shiraishi A, Teraoka N, Tanaka T, Tanaka A, Matsuda H, Kiso Y (2008) Oral administratipn of dihomo-γ-linolenic acid prevents development of atopic dermatitis in NC/Nga mice. Lipids 43:37–43

    Article  PubMed  CAS  Google Scholar 

  • Levin G, Duffin KL, Obukowicz MG, Hummert SL, Fujiwara H, Needleman P, Raz A (2002) Differential metabolism of dihomo-gamma-linolenic acid and arachidonic acid by cyclo-oxygenase-1 and cyclo-oxygenase-2: implications for cellular synthesis of prostaglandin E1 and prostaglandin E2. Biochem J 365:489–496

  • Macartney A, Maresca B, Cossins AR (1994) Acyl-CoA desaturases and the adaptive regulation of membrane lipid composition. In: Cossins AR (ed) Temperature adaptation of biological membranes. Portland Press, London, pp 129–139

    Google Scholar 

  • Mills SC, Windsor AC, Knight SC (2005) The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes. Clin Exp Immunol 142:216–228

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Morse PF, Horrobin DF, Manku MS, Stewart JC, Allen R, Littlewood S, Wright S, Burton J, Gould DJ, Holt PJ (1989) Meta-analysis of placebo-controlled studies of the efficacy of Epogam in the treatment of atopic eczema. Relationship between plasma essential fatty acid changes and clinical response. Br J Dermatol 121:75–90

    Article  PubMed  CAS  Google Scholar 

  • Napier JA, Sayanova O (2005) The production of very-long-chain PUFA biosynthesis in transgenic plants: towards a sustainable source of fish oils. Proc Nutr Soc 64:387–393

    Article  PubMed  CAS  Google Scholar 

  • Opekarova M, Tanner W (2003) Specific lipid requirements of membrane proteins—a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22

    Article  PubMed  CAS  Google Scholar 

  • Ostergaard S, Olsson L, Nielsen J (2000) Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev 64:34–50

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Segawa S, Hayashi A, Nakakita Y, Kaneda H, Watari J, Yaasui H (2008) Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates the development of dermatitis and inhibits immunoglobulin E production in atopic dermatitis model NC/Nga mice. Bio Pharm Bull 31:884–889

    Article  CAS  Google Scholar 

  • Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci U S A 71:522–525

  • Stukey JE, McDonough VM, Martin CE (1989) Isolation and characterization of OLE1, a gene affecting fatty acid desaturation from Saccharomyces cerevisiae. J Biol Chem 264:16537–16544

    PubMed  CAS  Google Scholar 

  • Sunada Y, Nakamura S, Kamei C (2008) Effect of Lactobacillus acidophilus strain L-55 on the development of atopic dermatitis-like skin lesions in NC/Nga mice. Int Immunopharmacol 8:1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Tanaka A, Jung K, Benyacoub J, Prioult G, Okamoto N, Ohmori K, Blum S, Mercenier A, Matsuda H (2009) Oral supplementation with Lactobacillus rhamnosus CGMCC 1.3724 prevents development of atopic dermatitis in NC/NgaTnd mice possibly by modulating local production of IFN-γ. Exp Dermatol 18:1022–1027

    Article  PubMed  Google Scholar 

  • Vance DE, Vance JE (2002) Biochemistry of lipids, lipoproteins and membranes, 4th edn. Elsevier, Amsterdam

    Google Scholar 

  • Wang X, Lin H, Gu Y (2012) Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 11:25

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wright S, Burton JL (1982) Oral evening-primrose-seed oil improves atopic eczema. Lancet 2:1120–1122

    Article  PubMed  CAS  Google Scholar 

  • Yamada EA, Sgarbieri VC (2005) Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. J Agric Food Chem 18:3931–3936

    Article  Google Scholar 

  • Yazawa H, Iwahashi H, Kamisaka Y, Kimura K, Aki K, Ono T, Uemura H (2007) Heterologous production of dihomo-gamma-linolenic acid in yeast Saccharomyces cerevisiae. Appl Environ Microbiol 73:6965–6971

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang T, Yang H, Wang R, Xu K, Xin Y, Ren G, Zhou G, Zhang C, Wang L, Zhang Z (2011) Oral administration of myostatin-specific whole recombinant yeast Saccharomyces cerevisiae vaccine increases body weight and muscle composition in mice. Vaccine 29:8412–8416

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naoko Watanabe or Hiroshi Uemura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, N., Masubuchi, D., Itoh, M. et al. Oral administration of whole dihomo-γ-linolenic acid-producing Saccharomyces cerevisiae suppresses cutaneous inflammatory responses induced by croton oil application in mice. Appl Microbiol Biotechnol 98, 8697–8706 (2014). https://doi.org/10.1007/s00253-014-5949-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5949-3

Keywords

Navigation