Skip to main content

Advertisement

Log in

iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Cancer is a terrible disease, recent studies reported that tumor T cell antigens (TTCAs) may play a promising role in cancer treatment. Since experimental methods are still expensive and time-consuming, it is highly desirable to develop automatic computational methods to identify tumor T cell antigens from the huge amount of natural and synthetic peptides. Hence, in this study, a novel computational model called iTTCA-MFF was proposed to identify TTCAs. In order to describe the sequence effectively, the physicochemical (PC) properties of amino acid and residue pairwise energy content matrix (RECM) were firstly employed to encode peptide sequences. Then, two different approaches including covariance and Pearson’s correlation coefficient (PCC) were used to collect discriminative information from PC and RECM matrixes. Next, an effective feature selection approach called the least absolute shrinkage and selection operator (LAASO) was adopted to select the optimal features. These selected optimal features were fed into support vector machine (SVM) for identifying TTCAs. We performed experiments on two different datasets, experimental results indicated that the proposed method is promising and may play a complementary role to the existing methods for identifying TTCAs. The datasets and codes can be available at https://figshare.com/articles/online_resource/iTTCA-MFF/17636120.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets and source code of this study can be downloaded via https://figshare.com/articles/online_resource/iTTCA-MFF/17636120.

References

  • Akbar S, Rahman AU, Hayat M, Sohail M (2020) cACP: Classifying anticancer peptides using discriminative intelligent model via Chou’s 5-step rules and general pseudo components. Chemomet Intel Lab Syst 196:103912

  • Beheshti I, Demirel H (2016) Initiative AsDN. Feature-ranking-based Alzheimer’s disease classification from structural MRI. Magnet Resonance Imaging 34(3):252–63.

  • Bin Y, Zhang W, Tang W, Dai R, Li M, Zhu Q et al (2020) Prediction of neuropeptides from sequence information using ensemble classifier and hybrid features. J Proteome Res 19(9):3732–3740

    Article  CAS  PubMed  Google Scholar 

  • Bobisse S, Foukas PG, Coukos G, Harari A (2016) Neoantigen-based cancer immunotherapy. Annals Translation Med 4(14):262

  • Bray FI, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clinic 68(6):394–424

    Google Scholar 

  • Charoenkwan P, Nantasenamat C, Hasan MM, Shoombuatong W (2020) iTTCA-Hybrid: improved and robust identification of tumor T cell antigens by utilizing hybrid feature representation. Analytic Biochem 113747

  • Chen H, Duan X, Liu F, Lu F, Ma X, Zhang Y et al (2016) Multivariate classification of autism spectrum disorder using frequency-specific resting-state functional connectivity—a multi-center study. Prog Neuropsychopharmacol Biol Psychiatry 64:1–9

    Article  PubMed  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Google Scholar 

  • Couzin-Frankel J (2013) Cancer immunotherapy. Am Assoc Adv Sci

  • Dai R, Zhang W, Tang W, Wynendaele E, Zhu Q, Bin Y et al (2021) BBPpred: sequence-based prediction of blood-brain barrier peptides with feature representation learning and logistic regression. J Chem Inf Model 61(1):525–534

    Article  CAS  PubMed  Google Scholar 

  • Ding C, Yuan L, Guo S, Lin H, Chen W (2012) Identification of mycobacterial membrane proteins and their types using over-represented tripeptide compositions. J Proteomics 77:321–328

    Article  CAS  PubMed  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347(4):827–839

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Cai L, Zeng X, Zou Q (2020) StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency. Bioinformatics 36(10):3028–3034

    Article  CAS  PubMed  Google Scholar 

  • Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33(1):190–234

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Cozzetto D (2015) DISOPRED3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6):857–863

    Article  CAS  PubMed  Google Scholar 

  • Khazaee A, Ebrahimzadeh A, Babajani-Feremi A (2016) Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease. Brain Imaging Behav 10(3):799–817

    Article  PubMed  Google Scholar 

  • Li B, Feng K, Ding J, Cai Y (2014) Predicting DNA-binding sites of proteins based on sequential and 3D structural information. Mol Genet Genomics 289(3):489–499

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen H, Li S, Liu Y, Li X, Yu B (2019) Accurate prediction of potential druggable proteins based on genetic algorithm and Bagging-SVM ensemble classifier. Artif Intell Med 98:35–47

    Article  PubMed  Google Scholar 

  • Lin H, Ding H (2011) Predicting ion channels and their types by the dipeptide mode of pseudo amino acid composition. J Theor Biol 269(1):64–69

    Article  CAS  PubMed  Google Scholar 

  • Lissabet JFB, Belen LH, Farias JG (2019) TTAgP 1.0: a computational tool for the specific prediction of tumor T cell antigens. Comput Biol Chem 83:107103

  • Liu J, Ji S, Ye J (2009) SLEP: sparse learning with efficient projections. Arizona State University 6(491):7

    Google Scholar 

  • Liu Z, Xiao X, Yu D-J, Jia J, Qiu W-R, Chou K-C (2016) pRNAm-PC: predicting N6-methyladenosine sites in RNA sequences via physical–chemical properties. Anal Biochem 497:60–67

    Article  CAS  PubMed  Google Scholar 

  • Manavalan B, Basith S, Shin TH, Wei L, Lee G (2019) AtbPpred: a robust sequence-based prediction of anti-tubercular peptides using extremely randomized trees. Comput Struct Biotechnol J 17:972–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mészáros B, Erdős G, Dosztányi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46(W1):W329–W337

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra A, Pokhrel P, Hoque MT (2019) StackDPPred: a stacking based prediction of DNA-binding protein from sequence. Bioinformatics 35(3):433–441

    Article  CAS  PubMed  Google Scholar 

  • Mizukoshi E, Nakamoto Y, Arai K, Yamashita T, Sakai A, Sakai Y et al (2011) Comparative analysis of various tumor-associated antigen-specific t-cell responses in patients with hepatocellular carcinoma. Hepatology 53(4):1206–1216

    Article  CAS  PubMed  Google Scholar 

  • Olsen LR, Tongchusak S, Lin H, Reinherz EL, Brusic V, Zhang GL (2017) TANTIGEN: a comprehensive database of tumor T cell antigens. Cancer Immunol Immunother 66(6):731–735

    Article  CAS  PubMed  Google Scholar 

  • Saini SK, Rekers N, Hadrup SR (2017) Novel tools to assist neoepitope targeting in personalized cancer immunotherapy. Ann Oncol 28:3–10

    Article  Google Scholar 

  • Schumacher TNM, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA: A Cancer J Clinic 66(1):7–30

  • Shoombuatong W, Schaduangrat N, Pratiwi R, Nantasenamat C (2019) THPep: a machine learning-based approach for predicting tumor homing peptides. Comput Biol Chem 80:441–451

    Article  CAS  PubMed  Google Scholar 

  • Tang H, Su Z-D, Wei H-H, Chen W, Lin H (2016) Prediction of cell-penetrating peptides with feature selection techniques. Biochem Biophys Res Commun 477(1):150–154

    Article  CAS  PubMed  Google Scholar 

  • Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 967347

  • Ueki K, Sato K, Nakamura S, Terada T, Sumikoshi K, Shimizu K (2016) Development of a computational method for lipid-binding protein prediction

  • Verma R, Tiwari A, Kaur S, Varshney GC, Raghava GP (2008) Identification of proteins secreted by malaria parasite into erythrocyte using SVM and PSSM profiles. BMC Bioinformatics 9(1):201

    Article  PubMed  PubMed Central  Google Scholar 

  • Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR et al (2019) The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47

  • Vijayakumar S, Ptv L (2015) ACPP: a web server for prediction and design of anti-cancer peptides. Int J Pept Res Ther 21(1):99–106

    Article  CAS  Google Scholar 

  • Wang K, Li S, Wang Q, Hou C (2019) Identification of hormone-binding proteins using a novel ensemble classifier. Computing 101(6):693–703

    Article  Google Scholar 

  • Wang X, Zhang W, Zhang Q, Li G (2015) MultiP-SChlo: multi-label protein subchloroplast localization prediction with Chou’s pseudo amino acid composition and a novel multi-label classifier. Bioinformatics 31(16):2639–2645

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Wang P, Chou K (2012) iNR-PhysChem: a sequence-based predictor for identifying nuclear receptors and their subfamilies via physical-chemical property matrix. PLoS One 7(2)

  • Xiao X, Wang P, Lin WZ, Jia JH, Chou KC (2013) iAMP-2L: A two-level multi-label classifier for identifying antimicrobial peptides and their functional types. Anal Biochem 436(2):168–177

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Zou H, Lin W (2015) iMem-Seq: A multi-label learning classifier for predicting membrane proteins types. J Membr Biol 248(4):745–752

    Article  CAS  PubMed  Google Scholar 

  • Xiao X, Xu Z, Qiu W, Wang P, Ge H, Chou K (2019) iPSW(2L)-PseKNC: a two-layer predictor for identifying promoters and their strength by hybrid features via pseudo K-tuple nucleotide composition. Genomics 111(6):1785–1793

    Article  CAS  PubMed  Google Scholar 

  • Zhang GL, Chitkushev L, Keskin DB, Brusic V (eds.) (2019) TANTIGEN 2.0: an online database and analysis platform for tumor T cell antigens. Bioinformat Biomed

  • Zuo Y, Li Q (2010) Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids. Amino Acids 38(3):859–867

    Article  CAS  PubMed  Google Scholar 

  • Zou H-L (2016) A new multi-label classifier for identifying the functional types of singleplex and multiplex antimicrobial peptides. Int J Pept Res Ther 22(2):281–287

    Article  CAS  Google Scholar 

  • Zou H-L, Xiao X (2016) Classifying multifunctional enzymes by incorporating three different models into Chou’s general pseudo amino acid composition. J Membr Biol 249(4):551–557

    Article  CAS  PubMed  Google Scholar 

  • Zou H, Yang J (2019a) Dynamic thresholding networks for schizophrenia diagnosis. Artif Intell Med 96:25–32

    Article  PubMed  Google Scholar 

  • Zou H, Yang J (2019b) Multi-frequency dynamic weighted functional connectivity networks for schizophrenia diagnosis. Appl Magn Reson 50(7):847–859

    Article  Google Scholar 

  • Zou H, Yin Z (2021) Identifying dipeptidyl peptidase-IV inhibitory peptides based on correlation information of physicochemical properties. Internatl J Peptide Res Therapeut 1–9

Download references

Funding

This work was supported by the National Nature Scientific Foundation of China (No. 62061019), the General Project of Jiangxi Natural Science Foundation (20202BABL202014), and the General Project of Jiangxi Education Department (GJJ190587).

Author information

Authors and Affiliations

Authors

Contributions

Hongliang Zou: conceptualization, methodology, data curation, writing-original draft, preparation, visualization, investigation, validation, writing-review and editing. Fan Yang: supervision. Zhijian Yin: supervision, funding acquisition.

Corresponding author

Correspondence to Hongliang Zou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Yang, F. & Yin, Z. iTTCA-MFF: identifying tumor T cell antigens based on multiple feature fusion. Immunogenetics 74, 447–454 (2022). https://doi.org/10.1007/s00251-022-01258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-022-01258-5

Keywords

Navigation