Skip to main content
Log in

The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The experimental data generated and analyzed during the present study are available from the corresponding author on reasonable request.

References

  • Ahlawat S, Kumar N, Dasgupta R et al (2013) Raman spectroscopic investigations on optical trap induced deoxygenation of red blood cells. Appl Phys Lett 103:183704

    Article  Google Scholar 

  • Asghari-Khiavi M, Mechler A, Bambery KR et al (2009) A resonance Raman spectroscopic investigation into the effects of fixation and dehydration on heme environment of hemoglobin. J Raman Spectrosc 40:1668–1674

    Article  CAS  Google Scholar 

  • Basselin M, Kim H-W, Chen M et al (2010) Lithium modifies brain arachidonic and docosahexaenoic metabolism in rat lipopolysaccharide model of neuroinflammation. J Lipid Res 51:1049–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner H, Mayer A, Sussner H (1972) Resonance Raman scattering on the haem group of oxy- and deoxyhaemoglobin. J Mol Biol 70:153–156

    Article  CAS  PubMed  Google Scholar 

  • Calkin CV, Gardner DM, Ransom T, Alda M (2013) The relationship between bipolar disorder and type 2 diabetes: More than just co-morbid disorders. Ann Med 45:171–181

    Article  CAS  PubMed  Google Scholar 

  • Chan JW (2013) Recent advances in laser tweezers Raman spectroscopy (LTRS) for label-free analysis of single cells. J Biophotonics 6:36–48

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta R, Ahlawat S, Verma RS et al (2010) Hemoglobin degradation in human erythrocytes with long-duration near-infrared laser exposure in Raman optical tweezers. J Biomed Opt 15:055009

    Article  PubMed  Google Scholar 

  • Dasgupta R, Verma RS, Ahlawat S et al (2011) Studies on erythrocytes in malaria infected blood sample with Raman optical tweezers. J Biomed Opt 16:077009

    Article  PubMed  Google Scholar 

  • De LAC, Rusciano G, Ciancia R et al (2008) Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by Raman Tweezers. Opt Express 16:7943–7957

    Article  Google Scholar 

  • Evrard JL, Baumann P, Bally RP, Peters Haefeli L (1978) Lithium concentrations in saliva, plasma and red blood cells of patients given lithium acetate. Acta Psychiatr Scand 58:67–79

    Article  CAS  PubMed  Google Scholar 

  • Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–840

    Article  CAS  PubMed  Google Scholar 

  • Fukai T, Ushio-Fukai M (2011) Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal 15:1583–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn Tisman; Show-Jen G. Wu (1980) Haematological Side-Effects of Lithium. In: F.N. Johnson (ed). MTP Press Limited

  • Grizelj M, Crnković D, Kostanjšak L et al (2017) Comparison of lithium concentration in serum, plasma and erythrocytes. Alcohol Psychiatry Res J Psychiatr Res Addict 53:99–114

    Google Scholar 

  • Hajek T, Calkin C, Blagdon R et al (2014) Insulin resistance, diabetes mellitus, and brain structure in bipolar disorders. Neuropsychopharmacology 39:2910–2918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajek T, Calkin C, Blagdon R et al (2015) Type 2 diabetes mellitus: a potentially modifiable risk factor for neurochemical brain changes in bipolar disorders. Biol Psychiatry 77:295–303

    Article  CAS  PubMed  Google Scholar 

  • Holstein-Rathlou NH (1990) Lithium transport across biological membranes. Kidney Int Suppl 28:S4-9

    CAS  PubMed  Google Scholar 

  • Imandt L, Tijhuis D, Wessels H, Haanen C (1981) Lithium inhibits adenylate cyclase of human platelets. Thromb Haemost 45:142–145

    Article  CAS  PubMed  Google Scholar 

  • Jain SK (1989) Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells. J Biol Chem 264:21340–21345

    Article  CAS  PubMed  Google Scholar 

  • Ji H-L, Bishop LR, Anderson SJ et al (2004) The role of pre-H2 domains of α- and δ-epithelial Na+ channels in ion permeation, conductance, and amiloride sensitivity*. J Biol Chem 279:8428–8440

    Article  CAS  PubMed  Google Scholar 

  • Khan H, JanHashmatullah SU et al (2010) Effect of lithium metal on the chemical status of glutathione (GSH) present in whole blood (especially in plasma and cytosolic fraction in human blood). Pak J Pharm Sci 23:188–193

    CAS  PubMed  Google Scholar 

  • Krasnowska EK, Gratton E, Parasassi T (1998) Prodan as a membrane surface fluorescence probe: partitioning between water and phospholipid phases. Biophys J 74:1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu R, Zheng L, Matthews DL et al (2011) Power dependent oxygenation state transition of red blood cells in a single beam optical trap. Appl Phys Lett 99:5–8

    Google Scholar 

  • Loehr TM, Loehr JS (1973) Determination of oxidation and spin states of heme iron. Resonance Raman spectroscopy of cytochrome c, microperoxidase, and horseradish per oxidase. Biochem Biophys Res Commun 55:218–223

    Article  CAS  PubMed  Google Scholar 

  • Medić B, Stojanović M, Stimec BV et al (2020) Lithium - pharmacological and toxicological aspects: the current state of the art. Curr Med Chem 27:337–351

    Article  PubMed  Google Scholar 

  • Mohanty SK, Uppal A, Gupta PK (2008) Optofluidic stretching of RBCs using single optical tweezers. J Biophotonics 1:522–525

    Article  Google Scholar 

  • Nagababu E, Chrest FJ, Rifkind JM (2003) Hydrogen-peroxide-induced heme degradation in red blood cells: the protective roles of catalase and glutathione peroxidase. Biochim Biophys Acta - Gen Subj 1620:211–217

    Article  CAS  Google Scholar 

  • Ong CW, Shen ZX, Ang KKH et al (1999) Resonance Raman microspectroscopy of normal erythrocytes and plasmodium berghei-infected erythrocytes. Appl Spectrosc 53:1097–1101

    Article  CAS  Google Scholar 

  • Parasassi T, De Stasio G, d’Ubaldo A, Gratton E (1990) Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. Biophys J 57:1179–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parasassi T, Krasnowska EK, Bagatolli L, Gratton E (1998) Laurdan and prodan as polarity-sensitive fluorescent membrane probes. J Fluoresc 8:365–373

    Article  CAS  Google Scholar 

  • Petrov DV (2007) Raman spectroscopy of optically trapped particles. J Opt A Pure Appl Opt 9:S139–S156

    Article  CAS  Google Scholar 

  • Pettegrew JW, Short JW, Woessner RD et al (1987) The effect of lithium on the membrane molecular dynamics of normal human erythrocytes. Biol Psychiatry 22:857–871

    Article  CAS  PubMed  Google Scholar 

  • Pontremoli R, Zerbini G, Rivera A, Canessa M (1994) Insulin activation of red blood cell Na+/H+ exchange decreases the affinity of sodium sites. Kidney Int 46:365–375

    Article  CAS  PubMed  Google Scholar 

  • Quig DW (1998) Cysteine metabolism and metal toxicity. Altern Med Rev 3(4):262–270

    CAS  PubMed  Google Scholar 

  • Quiroz JA, Gould TD, Manji HK (2004) Molecular effects of lithium. Mol Interv 4:259–272

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Bálint Š, Cossins B et al (2009) Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers. Biophys J 96:209–216

    Article  CAS  PubMed  Google Scholar 

  • Rottenberg H (1992) Probing the interactions of alcohols with biological membranes with the fluorescent probe prodan. Biochemistry 31:9473–9481

    Article  CAS  PubMed  Google Scholar 

  • Rusciano G (2010) Experimental analysis of Hb oxy–deoxy transition in single optically stretched red blood cells. Phys Medica 26:233–239

    Article  CAS  Google Scholar 

  • Schatzberg AF, Nemeroff CB, The American Psychiatric Publishing Textbook of Psychopharmacology 4th edn. American Psychiatric Publishing (2009)

  • Silverstone PH, Wu RH, O’Donnell T et al (2002) Chronic treatment with both lithium and sodium valproate may normalize phosphoinositol cycle activity in bipolar patients. Hum Psychopharmacol Clin Exp 17:321–327

    Article  CAS  Google Scholar 

  • Singh Y, Chowdhury A, Mukherjee C et al (2019) Simultaneous photoreduction and Raman spectroscopy of red blood cells to investigate the effects of organophosphate exposure. J Biophotonics 12:e201800246

    Article  PubMed  Google Scholar 

  • Swann AC, Berman N, Frazer A et al (1987) Lithium distribution in mania: Plasma and red blood cell lithium, clinical state, and monoamine metabolites during lithium treatment. Psychiatry Res 20:1–12

    Article  CAS  PubMed  Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium Intoxication. J Am Soc Nephrol 10:666–674

    Article  CAS  PubMed  Google Scholar 

  • Viskupicova J, Blaskovic D, Galiniak S et al (2015) Effect of High Glucose Concentrations on Human Erythrocytes in Vitro 5:381–387

    CAS  Google Scholar 

  • Ward ME, Musa MN, Bailey L (1994) Clinical Pharmacokinetics of Lithium. J Clin Pharmacol 34:280–285

    Article  CAS  PubMed  Google Scholar 

  • Wilson-Ashworth HA, Bahm Q, Erickson J et al (2006) Differential detection of phospholipid fluidity, order, and spacing by fluorescence spectroscopy of bis-pyrene, prodan, nystatin, and merocyanine 540. Biophys J 91:4091–4101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood BR, Tait B, McNaughton D (2001) Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte. Biochim Biophys Acta- Mol Cell Res 1539:58–70

    Article  CAS  Google Scholar 

  • Wood BR, Hammer L, Davis L, McNaughton D (2005) Raman microspectroscopy and imaging provides insights into heme aggregation and denaturation within human erythrocytes. J Biomed Opt 10:014005

    Article  Google Scholar 

  • Young W (2009) Review of lithium effects on brain and blood. Cell Transplant 18:951–975

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors like to thank Dr. S. P. Jaiswal for providing the blood samples from Choithram Hospital and Research Centre, Indore. Yashveer Singh acknowledges the financial support by Raja Ramanna Centre for Advanced Technology (RRCAT), Department of Atomic Energy, Government of India and Homi Bhabha National Institute, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raktim Dasgupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y., Chowdhury, A., Dasgupta, R. et al. The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap. Eur Biophys J 52, 91–100 (2023). https://doi.org/10.1007/s00249-023-01643-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-023-01643-2

Keywords

Navigation