Skip to main content

Advertisement

Log in

Structural and biochemical analyses of the tetrameric cell binding domain of Lys170 from enterococcal phage F170/08

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Lysins are a class of hydrolytic enzymes used by bacteriophages to target and cleave the peptidoglycan of bacterial cell walls during their lytic cycle. The lysins from bacteriophages that infect Gram-positive bacteria are typically monomeric and consist of one or two catalytic domains (CD) and a cell binding domain (CBD). However, multimeric lysins encoded by a single gene have also been reported, among which Lys170 from enterococcal phage F170/08 was one of the first identified. Here, we determined the crystal structure of Lys170 CBD at 1.40 Å resolution. The structure reveals that Lys170 CBDs assemble into a tetrameric functional unit and that each monomer folds into a three-stranded β-sheet core capped on each side by an α-helix. In addition, we identified key residues of Lys170 CBD involved in host cell binding. Our work provides a basis for designing highly efficient lysins targeting Enterococcus faecalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Atomic coordinate and structure have been deposited in the Protein Data Bank (PDB) under accession number 7D55.

References

  • Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  CAS  Google Scholar 

  • Alcorlo M, Martinez-Caballero S, Molina R, Hermoso JA (2017) Carbohydrate recognition and lysis by bacterial peptidoglycan hydrolases. Curr Opin Struct Biol 44:87–100

    Article  CAS  Google Scholar 

  • Briers Y, Schmelcher M, Loessner MJ, Hendrix J, Engelborghs Y, Volckaert G, Lavigne R (2009) The high-affinity peptidoglycan binding domain of Pseudomonas phage endolysin KZ144. Biochem Biophys Res Commun 383:187–191

    Article  CAS  Google Scholar 

  • Broendum SS, Buckle AM, McGowan S (2018) Catalytic diversity and cell wall binding repeats in the phage-encoded endolysins. Mol Microbiol 110:879–896

    Article  CAS  Google Scholar 

  • Bustamante N, Iglesias-Bexiga M, Bernardo-Garcia N, Silva-Martin N, Garcia G, Campanero-Rhodes MA, Garcia E, Uson I, Buey RM, Garcia P, Hermoso JA, Bruix M, Menendez M (2017) Deciphering how Cpl-7 cell wall-binding repeats recognize the bacterial peptidoglycan. Sci Rep 7:16494

    Article  Google Scholar 

  • Catalao MJ, Gil F, Moniz-Pereira J, Sao-Jose C, Pimentel M (2013) Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev 37:554–571

    Article  CAS  Google Scholar 

  • Chen VB, Arendall WB 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC (2010) MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12–21

    Article  CAS  Google Scholar 

  • Cisek AA, Dabrowska I, Gregorczyk KP, Wyzewski Z (2017) Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages. Curr Microbiol 74:277–283

    Article  CAS  Google Scholar 

  • Dunne M, Leicht S, Krichel B, Mertens HDT, Thompson A, Krijgsveld J, Svergun DI, Gómez-Torres N, Garde S, Uetrecht C, Narbad A, Mayer MJ, Meijers R (2016) Crystal structure of the CTP1L endolysin reveals how its activity is regulated by a secondary translation product. J Biol Chem 291:4882–4893

    Article  CAS  Google Scholar 

  • Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  Google Scholar 

  • Escobedo S, Campelo AB, Wegmann U, García P, Rodríguez A, Martínez B (2019) Insight into the lytic functions of the lactococcal prophage TP712. Viruses 11(10):881

    Article  CAS  Google Scholar 

  • Fenton M, Ross P, McAuliffe O, O’Mahony J, Coffey A (2010) Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 1:9–16

    Article  Google Scholar 

  • Fischetti VA (2018) Development of phage lysins as novel therapeutics: a historical perspective. Viruses 10(6):310

    Article  Google Scholar 

  • Gan N, Zhen X, Liu Y, Xu X, He C, Qiu J, Liu Y, Fujimoto GM, Nakayasu ES, Zhou B, Zhao L, Puvar K, Das C, Ouyang S, Luo ZQ (2019) Regulation of phosphoribosyl ubiquitination by a calmodulin-dependent glutamylase. Nature 572:387–391

    Article  CAS  Google Scholar 

  • Gu J, Feng Y, Feng X, Sun C, Lei L, Ding W, Niu F, Jiao L, Yang M, Li Y, Liu X, Song J, Cui Z, Han D, Du C, Yang Y, Ouyang S, Liu ZJ, Han W (2014) Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLoS Pathog 10:e1004109

    Article  Google Scholar 

  • Gu J, Xi H, Cheng M, Han W (2018) Phage-derived lysins as therapeutic agents against multidrug-resistant Enterococcus faecalis. Future Microbiol 13:275–278

    Article  CAS  Google Scholar 

  • Gutiérrez D, Fernández L, Rodríguez A, García P (2018) Are phage lytic proteins the secret weapon to kill Staphylococcus aureus? mBio 9(1):e01923-17

    Article  Google Scholar 

  • Hermoso JA, Monterroso B, Albert A, Galan B, Ahrazem O, Garcia P, Martinez-Ripoll M, Garcia JL, Menendez M (2003) Structural basis for selective recognition of pneumococcal cell wall by modular endolysin from phage Cp-1. Structure 11:1239–1249

    Article  CAS  Google Scholar 

  • Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545-549

    Article  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858

    Article  CAS  Google Scholar 

  • Kerff F, Petrella S, Mercier F, Sauvage E, Herman R, Pennartz A, Zervosen A, Luxen A, Frere JM, Joris B, Charlier P (2010) Specific structural features of the N-acetylmuramoyl-L-alanine amidase AmiD from Escherichia coli and mechanistic implications for enzymes of this family. J Mol Biol 397:249–259

    Article  CAS  Google Scholar 

  • Koch S, Hufnagel M, Theilacker C, Huebner J (2004) Enterococcal infections: host response, therapeutic, and prophylactic possibilities. Vaccine 22:822–830

    Article  CAS  Google Scholar 

  • Kortright KE, Chan BK, Koff JL, Turner PE (2019) Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe 25:219–232

    Article  CAS  Google Scholar 

  • Lin DM, Koskella B, Lin HC (2017) Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 8:162–173

    Article  Google Scholar 

  • Loessner MJ (2005) Bacteriophage endolysins—current state of research and applications. Curr Opin Microbiol 8:480–487

    Article  CAS  Google Scholar 

  • Love MJ, Abeysekera GS, Muscroft-Taylor AC, Billington C, Dobson RCJ (2020) On the catalytic mechanism of bacteriophage endolysins: opportunities for engineering. Biochim Biophys Acta Proteins Proteom 1868:140302

    Article  CAS  Google Scholar 

  • McGowan S, Buckle AM, Mitchell MS, Hoopes JT, Gallagher DT, Heselpoth RD, Shen Y, Reboul CF, Law RH, Fischetti VA, Whisstock JC, Nelson DC (2012) X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci USA 109(31):12752–12757

    Article  CAS  Google Scholar 

  • Nelson D, Schuch R, Chahales P, Zhu S, Fischetti VA (2006) PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci USA 103:10765–10770

    Article  CAS  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  • Proenca D, Fernandes S, Leandro C, Silva FA, Santos S, Lopes F, Mato R, Cavaco-Silva P, Pimentel M, Sao-Jose C (2012) Phage endolysins with broad antimicrobial activity against Enterococcus faecalis clinical strains. Microb Drug Resist 18:322–332

    Article  CAS  Google Scholar 

  • Proenca D, Velours C, Leandro C, Garcia M, Pimentel M, Sao-Jose C (2015) A two-component, multimeric endolysin encoded by a single gene. Mol Microbiol 95:739–753

    Article  CAS  Google Scholar 

  • Rangan KJ, Pedicord VA, Wang YC, Kim B, Lu Y, Shaham S, Mucida D, Hang HC (2016) A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science 353:1434–1437

    Article  CAS  Google Scholar 

  • Stuart C, Schwartz S, Beeson T, Owatz C (2006) Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endodontics 32:93–98

    Article  Google Scholar 

  • Tamai E, Yoshida H, Sekiya H, Nariya H, Miyata S, Okabe A, Kuwahara T, Maki J, Kamitori S (2014) X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Mol Microbiol 92:326–337

    Article  CAS  Google Scholar 

  • Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H (2015) A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep 5:17257

    Article  CAS  Google Scholar 

  • Zhou B, Zhen X, Zhou H, Zhao F, Fan C, Perčulija V, Tong Y, Mi Z, Ouyang S (2020) Structural and functional insights into a novel two-component endolysin encoded by a single gene in Enterococcus faecalis phage. PLoS Pathog 16:e1008394

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff at beamline BL17U1 of Shanghai Synchrotron of Radiation Facility (SSRF) for their assistance with diffraction data collection. We thank Zhimin Guo from The First Hospital, Jilin University, Changchun, China for providing the strains of Enterococcus faecalis. We also thank our colleague Vanja Perčulija for language editing and improving the readability of the article.

Funding

This work was supported by the National Nature Science Foundation of China grants (31770948 and 31800159), the Special Open Fund of Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences (SKF2020NO1), Marine Economic Development Special Fund of Fujian Province (FJHJF-L-2020-2), the project of University-Industry Cooperation from Fujian Provincial Department of Science and Technology (2020Y4007), Natural Science Foundation of Fujian Province (2019J05065), High-level personnel introduction grant of Fujian Normal University (Z0210509), and the Fujian Provincial Department of Science and Technology (2020Y4007, 2021H0004).

Author information

Authors and Affiliations

Authors

Contributions

Songying Ouyang and Xiangkai Zhen conceived and designed the experiments. Xiaolong Xu and Dandan Zhang, Biao Zhou expressed Lys170 protein and Lys170 CBD mutants, performed crystal screening, crystal optimization, data collection, bactericidal activity assay, Xiangkai Zhen determined the structure of Lys170 CBD. Xiaolong Xu, Xiangkai Zhen and Songying Ouyang analyzed the data, Xiangkai Zhen and Songying Ouyang wrote the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Xiangkai Zhen or Songying Ouyang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zhang, D., Zhou, B. et al. Structural and biochemical analyses of the tetrameric cell binding domain of Lys170 from enterococcal phage F170/08. Eur Biophys J 50, 721–729 (2021). https://doi.org/10.1007/s00249-021-01511-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-021-01511-x

Keywords

Navigation