Skip to main content

Advertisement

Log in

Following the footprints of variability during filopodial growth

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Filopodia are actin-built finger-like dynamic structures that protrude from the cell cortex. These structures can sense the environment and play key roles in migration and cell–cell interactions. The growth-retraction cycle of filopodia is a complex process exquisitely regulated by intra- and extra-cellular cues, whose nature remains elusive. Filopodia present wide variation in length, lifetime and growth rate. Here, we investigate the features of filopodia patterns in fixed prostate tumor cells by confocal microscopy. Analysis of almost a thousand filopodia suggests the presence of two different populations: one characterized by a narrow distribution of lengths and the other with a much more variable pattern with very long filopodia. We explore a stochastic model of filopodial growth which takes into account diffusion and reactions involving actin and the regulatory proteins formin and capping, and retrograde flow. Interestingly, we found an inverse dependence between the filopodial length and the retrograde velocity. This result led us to propose that variations in the retrograde velocity could explain the experimental lengths observed for these tumor cells. In this sense, one population involves a wider range of retrograde velocities than the other population, and also includes low values of this velocity. It has been hypothesized that cells would be able to regulate retrograde flow as a mechanism to control filopodial length. Thus, we propound that the experimental filopodia pattern is the result of differential retrograde velocities originated from heterogeneous signaling due to cell–substrate interactions or prior cell–cell contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aberle H (2019) Axon guidance and collective cell migration by substrate-derived attractants. Front Mol Neurosci 12:148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson TW, Vaughan AN, Cramer LP (2008) Retrograde flow and myosin ii activity within the leading cell edge deliver f-actin to the lamella to seed the formation of graded polarity actomyosin ii filament bundles in migrating fibroblasts. Mol Biol Cell 19(11):5006–5018

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P et al (2014) Mutant p53-associated myosin-x upregulation promotes breast cancer invasion and metastasis. J Clin Investig 124(3):1069–1082

    CAS  PubMed  Google Scholar 

  • Atilgan E, Wirtz D, Sun SX (2006) Mechanics and dynamics of actin-driven thin membrane protrusions. Biophys J 90(1):65–76

    CAS  PubMed  Google Scholar 

  • BenSaïda A (2020) Shapiro-wilk and shapiro-francia normality tests . https://www.mathworks.com/matlabcentral/fileexchange/13964-shapiro-wilk-and-shapiro-francia-normality-tests. MATLAB Central File Exchange. Retrieved 15 July 2020

  • Bornschlögl T (2013) How filopodia pull: what we know about the mechanics and dynamics of filopodia. Cytoskeleton 70(10):590–603

    PubMed  Google Scholar 

  • Bornschlögl T, Romero S, Vestergaard CL, Joanny JF, Van Nhieu GT, Bassereau P (2013) Filopodial retraction force is generated by cortical actin dynamics and controlled by reversible tethering at the tip. Proc Natl Acad Sci 110(47):18928–18933

    PubMed  Google Scholar 

  • Breitsprecher D, Koestler SA, Chizhov I, Nemethova M, Mueller J, Goode BL, Small JV, Rottner K, Faix J (2011) Cofilin cooperates with fascin to disassemble filopodial actin filaments. J Cell Sci 124(19):3305–3318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell R (2018) notBoxPlot. https://github.com/raacampbell/notBoxPlot, GitHub. Retrieved 18 Dec 2018

  • Cohen M, Georgiou M, Stevenson NL, Miodownik M, Baum B (2010) Dynamic filopodia transmit intermittent delta-notch signaling to drive pattern refinement during lateral inhibition. Dev Cell 19(1):78–89

    CAS  PubMed  Google Scholar 

  • Daniels D (2010) Effect of capping protein on a growing filopodium. Biophys J 98(7):1139–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Anuu Rev Biophys 40:169–186

    CAS  Google Scholar 

  • Erban R, Flegg MB, Papoian GA (2014) Multiscale stochastic reaction-diffusion modeling: application to actin dynamics in filopodia. Bull Math Biol 76(4):799–818

    CAS  PubMed  Google Scholar 

  • Flegg MB, Chapman SJ, Erban R (2011) The two-regime method for optimizing stochastic reaction-diffusion simulations. J R Soc Interface 9:859–868

    PubMed  PubMed Central  Google Scholar 

  • Flegg MB, Chapman SJ, Zheng L, Erban R (2014) Analysis of the two-regime method on square meshes. SIAM J Sci Comput 36(3):B561–B588

    Google Scholar 

  • Gallo G, Letourneau PC (2004) Regulation of growth cone actin filaments by guidance cues. J Neurobiol 58(1):92–102

    CAS  PubMed  Google Scholar 

  • Goode BL, Eck MJ (2007) Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76:593–627

    CAS  PubMed  Google Scholar 

  • Heckman CA, Plummer H III (2013) Filopodia as sensors. Cell Signal 25(11):2298–2311

    CAS  PubMed  Google Scholar 

  • Hoelzle MK, Svitkina T (2012) The cytoskeletal mechanisms of cell-cell junction formation in endothelial cells. Mol Biol Cell 23(2):310–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S (2009) Non-genetic heterogeneity of cells in development: more than just noise. Development 136(23):3853–3862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husainy AN, Morrow AA, Perkins TJ, Lee JM (2010) Robust patterns in the stochastic organization of filopodia. BMC Cell Biol 11(1):86

    PubMed  PubMed Central  Google Scholar 

  • Jacquemet G, Hamidi H, Ivaska J (2015) Filopodia in cell adhesion, 3d migration and cancer cell invasion. Curr Opin Cell Biol 36:23–31

    CAS  PubMed  Google Scholar 

  • Jacquemet G, Baghirov H, Georgiadou M, Sihto H, Peuhu E, Cettour-Janet P, He T, Perälä M, Kronqvist P, Joensuu H et al (2016) L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat Commun 7(1):1–17

    Google Scholar 

  • Jacquemet G, Paatero I, Carisey AF, Padzik A, Orange JS, Hamidi H, Ivaska J (2017) Filoquant reveals increased filopodia density during breast cancer progression. J Cell Biol 216(10):3387–3403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquemet G, Stubb A, Saup R, Miihkinen M, Kremneva E, Hamidi H, Ivaska J (2019) Filopodome mapping identifies p130cas as a mechanosensitive regulator of filopodia stability. Curr Biol 29(2):202–216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jang KJ, Kim MS, Feltrin D, Jeon NL, Suh KY, Pertz O (2010) Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS One 5(12):e15966

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3(3):231–237

    CAS  PubMed  Google Scholar 

  • Kapustina M, Vitriol E, Elston TC, Loew LM, Jacobson K (2010) Modeling capping protein frap and cali experiments reveals in vivo regulation of actin dynamics. Cytoskeleton 67(8):519–534

    CAS  PubMed  Google Scholar 

  • Kovar DR, Wu JQ, Pollard TD (2005) Profilin-mediated competition between capping protein and formin cdc12p during cytokinesis in fission yeast. Mol Biol Cell 16(5):2313–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovar DR, Harris ES, Mahaffy R, Higgs HN, Pollard TD (2006) Control of the assembly of atp-and adp-actin by formins and profilin. Cell 124(2):423–435

    CAS  PubMed  Google Scholar 

  • Lan Y, Papoian GA (2008) The stochastic dynamics of filopodial growth. Biophys J 94(10):3839–3852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Espreafico EM, Mooseker MS, Forscher P (1996) Myosin drives retrograde f-actin flow in neuronal growth cones. Neuron 16(4):769–782

    CAS  PubMed  Google Scholar 

  • Liou YR, Torng W, Kao YC, Sung KB, Lee CH, Kuo PL (2014) Substrate stiffness regulates filopodial activities in lung cancer cells. PLoS One 9(2):e89767

    PubMed  PubMed Central  Google Scholar 

  • Marchenko OO, Das S, Yu J, Novak IL, Rodionov VI, Efimova N, Svitkina T, Wolgemuth CW, Loew LM (2017) A minimal actomyosin-based model predicts the dynamics of filopodia on neuronal dendrites. Mol Biol Cell 28(8):1021–1033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattila PK, Lappalainen P (2008) Filopodia: molecular architecture and cellular functions. Nat Rev Mol Biol Cell 9(6):446–454

    CAS  Google Scholar 

  • McCroskery S, Chaudhry A, Lin L, Daniels MP (2006) Transmembrane agrin regulates filopodia in rat hippocampal neurons in culture. Mol Cell Neurosci 33(1):15–28

    CAS  PubMed  Google Scholar 

  • McGrath JL, Tardy Y, Dewey C Jr, Meister J, Hartwig J (1998) Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J 75(4):2070–2078

    CAS  PubMed  PubMed Central  Google Scholar 

  • McMillen LM, Vavylonis D (2016) Model of turnover kinetics in the lamellipodium: implications of slow-and fast-diffusing capping protein and arp2/3 complex. Phys Biol 13(6):066009

    PubMed  PubMed Central  Google Scholar 

  • Medeiros NA, Burnette DT, Forscher P (2006) Myosin ii functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8(3):216–226

    Google Scholar 

  • Miller J, Fraser SE, McClay D (1995) Dynamics of thin filopodia during sea urchin gastrulation. Development 121(8):2501–2511

    CAS  PubMed  Google Scholar 

  • Mogilner A, Rubinstein B (2005) The physics of filopodial protrusion. Biophys J 89(2):782–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oldenbourg R, Katoh K, Danuser G (2000) Mechanism of lateral movement of filopodia and radial actin bundles across neuronal growth cones. Biophys J 78(3):1176–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paez A, Vazquez E, Gueron G (2017) Heme oxygenase 1 governs the cytoskeleton at filopodia: pulling the brakes on the migratory capacity of prostate tumoral cells. Cell Death Discov 3(1):1–2

    Google Scholar 

  • Paul NR, Allen JL, Chapman A, Morlan-Mairal M, Zindy E, Jacquemet G, Fernandez del Ama L, Ferizovic N, Green DM, Howe JD et al (2015) \(\alpha \)5\(\beta \)1 integrin recycling promotes arp2/3-independent cancer cell invasion via the formin fhod3. J Cell Biol 210(6):1013–1031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peckham M (2016) How myosin organization of the actin cytoskeleton contributes to the cancer phenotype. Biochem Soc Trans 44(4):1026–1034

    CAS  PubMed  Google Scholar 

  • Peskin CS, Odell GM, Oster GF (1993) Cellular motions and thermal fluctuations: the brownian ratchet. Biophys J 65(1):316–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29(1):545–576

    CAS  PubMed  Google Scholar 

  • Roos C, Terlaky T, Vial JP (2005) Interior point methods for linear optimization. Springer Science & Business Media, Boston, MA

    Google Scholar 

  • Saha T, Rathmann I, Viplav A, Panzade S, Begemann I, Rasch C, Klingauf J, Matis M, Galic M (2016) Automated analysis of filopodial length and spatially resolved protein concentration via adaptive shape tracking. Mol Biol Cell 27(22):3616–3626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders TA, Llagostera E, Barna M (2013) Specialized filopodia direct long-range transport of shh during vertebrate tissue patterning. Nature 497(7451):628–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki AT, Chun C, Takeda K, Firtel RA (2004) Localized ras signaling at the leading edge regulates pi3k, cell polarity, and directional cell movement. J Cell Biol 167(3):505–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhar S, Kerleau M, Kühn S, Pernier J, Romet-Lemonne G, Jégou A, Carlier MF (2015) Formin and capping protein together embrace the actin filament in a ménage à trois. Nat Commun 6(1):1–12

    CAS  Google Scholar 

  • Shibue T, Brooks MW, Weinberg RA (2013) An integrin-linked machinery of cytoskeletal regulation that enables experimental tumor initiation and metastatic colonization. Cancer Cell 24(4):481–498

    CAS  PubMed  Google Scholar 

  • Sinnar SA, Antoku S, Saffin JM, Cooper JA, Halpain S (2014) Capping protein is essential for cell migration in vivo and for filopodial morphology and dynamics. Mol Biol Cell 25(14):2152–2160

    PubMed  PubMed Central  Google Scholar 

  • Steffen A, Faix J, Resch GP, Linkner J, Wehland J, Small JV, Rottner K, Stradal TE (2006) Filopodia formation in the absence of functional wave-and arp2/3-complexes. Mol Biol Cell 17(6):2581–2591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Svitkina TM, Bulanova EA, Chaga OY, Vignjevic DM, Kojima SI, Vasiliev JM, Borisy GG (2003) Mechanism of filopodia initiation by reorganization of a dendritic network. J Cell Biol 160(3):409–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatavarty V, Das S, Yu J (2012) Polarization of actin cytoskeleton is reduced in dendritic protrusions during early spine development in hippocampal neuron. Mol Biol Cell 23(16):3167–3177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100(2):209–219

    CAS  PubMed  Google Scholar 

  • Vitriol EA, McMillen LM, Kapustina M, Gomez SM, Vavylonis D, Zheng JQ (2015) Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep 11(3):433–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff K, Barrett-Freeman C, Evans MR, Goryachev AB, Marenduzzo D (2014) Modelling the effect of myosin x motors on filopodia growth. Phys Biol 11(1):016005

    CAS  PubMed  Google Scholar 

  • Zhuravlev PI, Papoian GA (2009) Molecular noise of capping protein binding induces macroscopic instability in filopodial dynamics. Proc Natl Acad Sci 106(28):11570–11575. https://doi.org/10.1073/pnas.0812746106. https://www.pnas.org/content/106/28/11570

  • Zhuravlev PI, Papoian GA (2011) Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport. Cell Adhesion Mig 5(5):448–456

    Google Scholar 

Download references

Acknowledgements

We thank Luis Diambra for helpful discussions on the method to reconstruct the experimental distributions. We thank Carla Pallavicini for valuable advise on image analysis.

Author information

Authors and Affiliations

Authors

Contributions

LB and NG designed study, DS, LB and NG analyzed data, DS, AP, GG, LB and NG performed research, DS, LB and NG wrote the paper. LB and NG contributed equally to this study.

Corresponding author

Correspondence to Nara Guisoni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or competing interests.

Ethics approval

Not applicable.

Funding

We acknowledge support from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-0370 and PICT-RAICES-2018-02639), Argentina.

Consent to participate

All the authors consent to participate.

Consent for publication

All the authors consent for publication.

Code availability

All the codes used in this work are available on request to the corresponding authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We acknowledge support from the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2015-0370 and PICT-RAICES-2018-02639), Argentina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senra, D., Páez, A., Gueron, G. et al. Following the footprints of variability during filopodial growth. Eur Biophys J 49, 643–659 (2020). https://doi.org/10.1007/s00249-020-01473-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-020-01473-6

Keywords

Navigation