Skip to main content
Log in

Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Magnetic circular dichroism (MCD) is a convenient technique for providing structural and mechanistic insight into enzymatic systems in solution. The focus of this review is on aspects of geometric and electronic structure that can be determined by MCD, and how this method can further our understanding of enzymatic mechanisms. Dinuclear Co(II) systems that catalyse hydrolytic reactions were selected to illustrate the approach. These systems all contain active sites with similar structures consisting of two Co(II) ions bridged by one or two carboxylates and a water or hydroxide. In most of these active sites one Co(II) is five-coordinate and one is six-coordinate, with differing binding affinities. It is shown how MCD can be used to determine which binding site—five or six-coordinate—has the greater affinity. Importantly, zero-field-splitting data and magnetic exchange coupling constants may be determined from the temperature and field dependence of MCD data. The relevance of these data to the function of the enzymatic systems is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  • Anderson RA, Vallee BL (1977) Selective cobalt oxidation as a means to differentiate metal-binding sites of cobalt alkaline phosphatase. Biochem 16:4388–4393

    Article  CAS  Google Scholar 

  • Anderson RA, Kennedy FS, Vallee BL (1976) The effect of Mg(II) on the spectral properties of Co(II) alkaline phosphatase. Biochem 15:3710–3716

    Article  CAS  Google Scholar 

  • Averill BA (2003) Dinuclear hydrolases. Comp Coord Chem II 8:641–676

  • Benning MM, Shim H, Raushel FM, Holden HM (2001) High resolution X-ray structures of different metal-substituted forms of phosphotriesterase from Pseudomonas diminuta. Biochem 40:2712–2722

    Article  CAS  Google Scholar 

  • Chaudhuri P, Querbach J, Wieghardt K, Nuber B, Weiss J (1990) Synthesis, electrochemistry, and magnetic properties of binuclear cobalt complexes containing the Co2(µ-X)(µ-carboxylato) n+2 core (X=OH, Cl, or Br; n = 1–3). The crystal structures of [Co II2 (µ-ClH2CCO2)2(µ-Cl)L2]PF6 and [CoIICoIII(µ-MeCO2)2(µ-OH)L2][ClO4]2·0.5H2O (L = N,N′,N″-trimethyl-1,4,7-triazacyclononane). J Chem Soc, Dalton Trans 1:271–278

  • Ciurli S, Benini S, Rypniewski WR, Wilson KS, Miletti S, Mangani S (1999) Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coord Chem Rev 190–192:331–355

    Article  Google Scholar 

  • Daumann LJ, Comba P, Larrabee JA, Schenk G, Stranger R, Cavigliasso G, Gahan LR (2013) Synthesis, magnetic properties, and phosphoesterase activity of dinuclear cobalt(II) complexes. Inorg Chem 52:2029–2043

    Article  CAS  PubMed  Google Scholar 

  • Daumann LJ, Schenk G, Ollis DL, Gahan LR (2014) Spectroscopic and mechanistic studies of dinuclear metallohydrolases and their biomimetic complexes. Dalton Trans 43:910–928

    Article  CAS  PubMed  Google Scholar 

  • Desmarais W, Bienvenue DL, Bzymek KP, Petsko GA, Ringe D, Holz RC (2006) The high-resolution structures of the neutral and the low pH crystals of aminopeptidase from Aeromonas proteolytica. J Biol Inorg Chem 11:398–408

    Article  CAS  PubMed  Google Scholar 

  • D’souza VM, Bennett B, Copik AJ, Holz RC (2000) Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli. Biochem 39:3817–3826

  • Ely F, Hadler KS, Gahan LR, Guddat LW, Ollis DL, Schenk G (2010) Catalytic mechanism of the hydrolytic reaction catalyzed by an organophosphate-degrading enzyme from Agrobacterium radiobacter. Biochem J 432:565–573

    Article  CAS  PubMed  Google Scholar 

  • Ely F, Hadler KS, Mitić N, Gahan LR, Ollis DL, Plugis NM, Russo MT, Larrabee JA, Schenk G (2011) Electronic and geometric structures of the organophosphate-degrading enzyme from Agrobacterium radiobacter (OpdA). J Biol Inorg Chem 16:777–787

    Article  CAS  PubMed  Google Scholar 

  • Foo J-L, Jackson CJ, Carr PD, Kim H-K, Schenk G, Gahan LR, Ollis DL (2010) Mutation of outer-shell residues modulates metal ion affinity in a metalloenzyme. Biochem J 429:313–321

    Article  CAS  PubMed  Google Scholar 

  • Hadler KS, Tanifum EA, Yip SH-C, Mitić N, Guddat LW, Jackson CJ, Gahan LR, Nguyen K, Carr PD, Ollis DL, Hengge AC, Larrabee JA, Schenk G (2008) Substrate-promoted formation of a catalytically competent binuclear center and regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes. J Am Chem Soc 130:14129–14138

    Article  CAS  PubMed  Google Scholar 

  • Hadler KS, Mitić N, Ely F, Hanson GR, Gahan LR, Larrabee JA, Ollis DL, Schenk G (2009) Structural flexibility enhances the reactivity of the bioremediator glycerophosphodiesterase by fine-tuning its mechanism of hydrolysis. J Am Chem Soc 131:11900–11908

    Article  CAS  PubMed  Google Scholar 

  • Hadler KS, Mitić N, Yip SH-C, Gahan LR, Ollis DL Schenk G, Larrabee JA (2010a) Electronic structure analysis of the dinuclear metal center in the bioremediator glycerophosphodiesterase (GpdQ) from Enterobacter aerogenes. Inorg Chem 49:2727–2734

  • Hadler KS, Gahan LR, Ollis DL Schenk G (2010b) The bioremediator glycerophosphodiesterase employs a non-processive mechanism for hydrolysis. J Inorg Biochem 104:211–213

  • Harding MJ, Briat B (1973) The electronic absorption and magnetic circular dichroism spectra of cobalt (II) bromate hexahydrate. Mol Phys 25:745–776

    Article  CAS  Google Scholar 

  • Holmquist B, Kaden TA, Vallee BL (1975) Magnetic circular dichroic spectra of cobalt(II) substituted metalloenzymes. Biochem 14:1454–1461

    Article  CAS  Google Scholar 

  • Holz RC (2002) The aminopeptidase from Aeromonas proteolytica: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis. Coord Chem Rev 232:5–26

    Article  CAS  Google Scholar 

  • Jackson CJ, Kim H-K, Carr PD, Liu J-W, Ollis DL (2005) The structure of an enzyme-product complex reveals the critical role of a terminal hydroxide nucleophile in the bacterial phosphotriesterase mechanism. Biochim Biphys Acta 1752:56–64

    Article  CAS  Google Scholar 

  • Jackson CJ, Carr PD, Liu J-W, Watt SJ, Beck JL, Ollis DL (2007) The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. J Mol Biol 367:1047–1062

    Article  CAS  PubMed  Google Scholar 

  • Jackson CJ, Foo J-L, Kim H-K, Carr PD, Liu J-W, Salem G, Ollis DL (2008) In crystallo capture of a Michaelis complex and product-binding modes of a bacterial phosphotriesterase. J Mol Biol 375:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Johansson FB, Bond AD, Nielsen UG, Moubaraki B, Murray KS, Berry KJ, Larrabee JA, McKenzie CJ (2008) Dicobalt II–II, II–III, and III–III complexes as spectroscopic models for dicobalt enzyme active sites. Inorg Chem 47:5079–5092

    Article  CAS  PubMed  Google Scholar 

  • Johnson MK (2000) Magnetic circular dichroism spectroscopy. In: Que L (ed) Physical methods in bioinorganic chemistry. University Science Books, Sausalito, pp 233–285

    Google Scholar 

  • Kaden TA, Holmquist B, Vallee BL (1974) Magnetic circular dichroism of Cobalt(II) complexes. Inorg Chem 13:2585–2590

    Article  CAS  Google Scholar 

  • Kimura E (2000) Dimetallic hydrolases and their models. Curr Opin Chem Biol 4:207–213

    Article  CAS  PubMed  Google Scholar 

  • Kirk ML, Peariso K (2003) Recent applications of MCD spectroscopy to metalloenzymes. Curr Opin Chem Biol 7:220–227

    Article  CAS  PubMed  Google Scholar 

  • Krzystek J, Zvyagin SA, Ozarowski A, Fiedler AT, Brunold TC, Telser J (2004) Definitive spectroscopic determination of zero-field splitting in high-spin cobalt(II). J Am Chem Soc 126:2148–2155

    Article  CAS  PubMed  Google Scholar 

  • Larrabee JA, Alessi CM, Asiedu ET, Cook JO, Hoerning KR, Klingler LJ, Okin GS, Santee SG, Volkert TL (1997) Magnetic circular dichroism spectroscopy as a probe of geometric and electronic structure of cobalt(II)-substituted proteins: ground-state zero-field splitting as a coordination number indicator. J Am Chem Soc 119:4182–4196

    Article  CAS  Google Scholar 

  • Larrabee JA, Leung C-H, Moore RL, Thamrong-nawasawat T, Wessler BSH (2004) Magnetic circular diochroism and Co(II) binding studies of Escherichia coli methionyl aminopeptidase. J Am Chem Soc 126:12316–12324

    Article  CAS  PubMed  Google Scholar 

  • Larrabee JA, Chyun S-A, Volwiler AS (2008) Magnetic circular dichroism study of a dicobalt(II) methionine aminopeptidase/fumagillin complex and dicobalt II-II and II-III model complexes. Inorg Chem 47:10499–10508

    Article  CAS  PubMed  Google Scholar 

  • Larrabee JA, Johnson WR, Volwiler AS (2009) Magnetic circular dichroism study of a dicobalt(II) complex with mixed 5- and 6-coordination: a spectroscopic model for dicobalt(II) hydrolases. Inorg Chem 48:8822–8829

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu S, Widom J, Kemp CW, Crews CM, Clardy J (1998) Structure of human methionine aminopeptidase-2 complexed with fumagillin. Science 282:1324–1327

    Article  CAS  PubMed  Google Scholar 

  • Lowther WT, Matthews BW (2002) Metalloaminopeptidases: common functional themes in disparate structural surroundings. Chem Rev 102:4581–4607

    Article  CAS  PubMed  Google Scholar 

  • Mason WR (2007) A practical guide to magnetic circular dichroism spectroscopy. Wiley, Hoboken

    Book  Google Scholar 

  • McCaffery AJ, Stephens PJ, Schatz PN (1967) The magnetic optical activity of d-d transitions. Octahedral chromium(III), cobalt(III), cobalt(II), nickel(II), and manganese(II) complexes. Inorg Chem 6:1614–1625

    Article  CAS  Google Scholar 

  • Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) The catalytic mechanisms of binuclear metallohydrolases. Chem Rev 106:3338–3363

    Article  PubMed  Google Scholar 

  • Mitić N, Miraula M, Selleck C, Hadler KS, Uribe E, Pedroso MM, Schenk G (2014) Catalytic mechanisms of metallohydrolases containing two metal ions. In: Christov CZ (ed) Advances in protein chemistry and structural biology: metal-containing enzymes. Elsevier, Oxford, pp 49–81

    Google Scholar 

  • Munih P, Moulin A, Stamper CC, Bennett B, Ringe D, Petsko GA, Holz RC (2007) X-ray crystallographic characterization of the Co(II)-substituted tris-bound form of the aminopeptidase from Aeromonas proteolytica. J Inorg Biochem 101:1099–1107

    Article  CAS  PubMed  Google Scholar 

  • Neese F, Solomon EI (1999) MCD C-term signs, saturation behavior, and determination of band polarizations in randomly oriented systems with spin ≥1/2. Applications to S = 1/2 and S = 5/2. Inorg Chem 38:1847–1865

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky SM, Falk K, Pelikan J, Brown DA, Tomkowicz Z, Haase W (2006) Orbital angular momentum contribution to the magneto-optical behavior of a binuclear cobalt(II) complex. Inorg Chem 45:688–694

    Article  CAS  PubMed  Google Scholar 

  • Ostrovsky S, Tomkowicz Z, Haase W (2009) High-spin Co(II) in monomeric and exchanged coupled oligomeric structures: magnetic and magnetic circular dichroism investigations. Coord Chem Rev 253:2363–2375

    Article  CAS  Google Scholar 

  • Pedroso MM, Ely F, Mitić N, Carpenter MC, Gahan LR, Wilcox DE, Larrabee JL, Ollis DL, Schenk G (2014) Comparative investigation of the reaction mechanisms of organophosphate-degrading phosphotriesterases from Agrobacterium radobacter (OpdA) and Pseudomonas diminuta (OPH). J Biol Inorg Chem 198:1263–1275

    Article  Google Scholar 

  • Piligkos S, Slep LD, Weyhermuller T, Chaudhuri P, Bill E, Neese F (2009) Magnetic circular dichroism spectroscopy of weakly exchanged coupled transition metal dimers: a model study. Coord Chem Rev 253:2352–2362

    Article  CAS  Google Scholar 

  • Prescott JM, Wagner FW, Holmquist B, Vallee BL (1985) Spectral and kinetic studies of metal-substituted Aeromonas aminopeptidase: nonidentical, interacting metal-binding sites. Biochem 24:5350–5356

    Article  CAS  Google Scholar 

  • Schatz PN, McCaffery AJ, Suetaka W, Henning W, Ritchie AB (1966) Faraday effect of charge-transfer transitions in Fe(CN) 3−6 , MnO4 , and CrO4 2−. J Chem Phys 45:722–734

    Article  CAS  Google Scholar 

  • Schenk G, Mitić N, Gahan LR, Ollis DL, McGeary RP, Guddat LW (2012) Binuclear metallohydrolases: complex mechanistic strategies for a simple chemical reaction. Acc Chem Res 45:1593–1603

    Article  CAS  PubMed  Google Scholar 

  • Schenk G, Mitić N, Hanson GR, Comba P (2013) Purple Aacid phosphatase: a journey into the function and mechanism of a colorful enzyme. Coord Chem Rev 257:473–482

    Article  CAS  Google Scholar 

  • Schultz BE, Ye BH, Li XY, Chan SI (1997) Electronic paramagnetic resonance and magnetic properties of model complexes for binuclear active sites in hydrolase enzymes. Inorg Chem 36:2617–2622

    Article  CAS  Google Scholar 

  • Solomon EI, Pavel EG, Loeb KE, Campochiaro C (1995) Magnetic circular dichroism spectroscopy as a probe of the geometric and electronic structure of non-heme ferrous enzymes. Coord Chem Rev 144:369–460

    Article  CAS  Google Scholar 

  • Solomon EI, Brunold TC, Davis MI, Kemsley JN, Sang-Kyu L, Lehnert N, Neese F, Skulan AJ, Yi-Shan Y, Zhou J (2000) Geometric and electronic structure/function correlations in non-heme iron enzymes. Chem Rev 100:235–349

    Article  CAS  PubMed  Google Scholar 

  • Solomon EI, Neidig ML, Schenk G (2003) Magnetic circular dichroism of paramagnetic species. Comp Coord Chem II 2:339–349

    Google Scholar 

  • Stec B, Holtz KM, Kantrowitz EV (2000) A revised mechanism for the alkaline phosphatase reaction involving three metal ions. J Mol Biol 299:1303–1311

    Article  CAS  PubMed  Google Scholar 

  • Stephens PJ (1976) Magnetic circular dichroism. Adv Chem Phys 25:197–264

    Google Scholar 

  • Taylor JS, Lau CY, Applebury ML, Coleman JE (1973) Escherichia coli Co(II) alkaline phosphatase. J Biol Chem 248:6216–6220

    CAS  PubMed  Google Scholar 

  • Wang WL, Chai SC, Huang M, He HZ, Hurley TD, Ye QZ (2008) Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity. J Med Chem 51:6110–6120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weston J (2005) Mode of action of bi- and trinuclear zinc hydrolases and their synthetic analogs. Chem Rev 105:2151–2174

    Article  CAS  PubMed  Google Scholar 

  • Wilcox DE (1996) Binuclear metallohydrolases. Chem Rev 96:2435–2458

    Article  CAS  PubMed  Google Scholar 

  • Xavier FR, Neves A, Casellato A, Peralta RA, Bortoluzzi AJ, Szpoganicz B, Severino PC, Terenzi H, Tomkowicz Z, Ostrovsky S, Haase W, Ozarowski A, Krzystek J, Telser J, Schenk G, Gahan LR (2009) Unsymmetrical FeIIICoII and GaIIICoII complexes as chemical hydrolases: biomimetic models for purple acid phosphatases (PAPs). Inorg Chem 48:7905–7921

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

J.A.L. wishes to acknowledge the National Science Foundation (USA) for financial support from grant CHE0848433 and grant CHE0820965 (MCD instrument). G.S. and N.M. acknowledge funding from the Australian Research Council (Future Fellowship) and the Science Foundation of Ireland (PIYRA Fellowship).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to James A. Larrabee, Gerhard Schenk or Mark J. Riley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrabee, J.A., Schenk, G., Mitić, N. et al. Use of magnetic circular dichroism to study dinuclear metallohydrolases and the corresponding biomimetics. Eur Biophys J 44, 393–415 (2015). https://doi.org/10.1007/s00249-015-1053-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1053-6

Keywords

Navigation