Skip to main content
Log in

The location of coenzyme Q10 in phospholipid membranes made of POPE: a small-angle synchrotron X-ray diffraction study

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The location of coenzyme Q10 (Q10) inside the inner mitochondrial membrane is a topic of research aiming at a deeper understanding of the function of the mitochondrial respiratory chain. We investigated the location of Q10 inside model membranes made of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine by means of small-angle synchrotron X-ray diffraction. Q10, which stands for ubiquinone-10 (UQ) or ubihydroquinone-10 (UH), did not remarkably influence the main phase transition temperature, but significantly decreased the lamellar-inverse hexagonal phase transition temperature (T h). The effect of UH on T h was stronger than the effect of UQ and the effect of liquid Q10 on T h was stronger than the effect of crystalline Q10. In the presence of Q10, the lattice parameters of the lamellar phases remained unchanged, whereas the H II lattice parameter was clearly influenced: While UQ had an increasing effect, UH had a decreasing effect. Furthermore, Q10 prevented the formation of cubic phases. The results give new evidence that the headgroup of Q10 is distant from the center of the membrane, which might be important for the function of the mitochondrial respiratory chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Q10:

Coenzyme Q10

UQ:

Ubiquinone-10

UH:

Ubihydroquinone-10

POPE:

1-palmitoyl-2-oleoyl-phosphatidylethanolamine

L β phase:

Lamellar gel phase

L α phase:

Lamellar liquid phase

H II phase:

Inverse hexagonal phase

T m :

Main phase transition temperature

T h :

Lamellar-inverse hexagonal phase transition temperature

References

  • Ausili A, Torrecillas A, Aranda F, de Godos A, Sánchez-Bautista S, Corbalán-García S, Gómez-Fernández JC (2008) Redox state of coenzyme Q10 determines its membrane localization. J Phys Chem B 112(40):12696–12702

    Article  CAS  PubMed  Google Scholar 

  • Barauskas J, Razumas V, Nylander T (1999) Solubilization of ubiquinone-10 in the lamellar and bicontinuous cubic phases of aqueous monoolein. Chem Phys Lipids 97(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Bentinger M, Brismar K, Dallner G (2007) The antioxidant role of coenzyme Q. Mitochondrion 7:S41–S50

    Article  CAS  PubMed  Google Scholar 

  • Castresana J, Alonso A, Arrondo JR, Goni FM, Casal H (1992) The physical state of ubiquinone-10, in pure form and incorporated into phospholipid bilayers. Eur J Biochem 204(3):1125–1130

    Article  CAS  PubMed  Google Scholar 

  • Cevc G (1991) How membrane chain-melting phase-transition temperature is affected by the lipid chain asymmetry and degree of unsaturation: an effective chain-length model. Biochemistry 30(29):7186–7193

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Rand R (1998) Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases. Biophys J 74(2):944–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cramer WA, Hasan SS, Yamashita E (2011) The Q cycle of cytochrome bc complexes: a structure perspective. Biochimic Biophysa Acta 1807(7):788–802

    Article  CAS  Google Scholar 

  • Endo S, Escher BI, Goss K-U (2011) Capacities of membrane lipids to accumulate neutral organic chemicals. Environ Sci Technol 45(14):5912–5921

    Article  CAS  PubMed  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. BBA 1271:195

    PubMed  Google Scholar 

  • Gomez-Fernandez J, Llamas MA, Aranda FJ (1999) The interaction of coenzyme Q with phosphatidylethanolamine membranes. Eur J Biochem 259(3):739–746

    Article  CAS  PubMed  Google Scholar 

  • Hauss T, Dante S, Haines TH, Dencher NA (2005) Localization of coenzyme Q10 in the center of a deuterated lipid membrane by neutron diffraction. Biochim Biophys Acta 1710(1):57–62

    Article  CAS  PubMed  Google Scholar 

  • Hickel A, Danner-Pongratz S, Amenitsch H, Degovics G, Rappolt M, Lohner K, Pabst G (2008) Influence of antimicrobial peptides on the formation of nonlamellar lipid mesophases. Biochim Biophys Acta 1778(10):2325–2333

    Article  CAS  PubMed  Google Scholar 

  • Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329(5990):448–451

    Article  CAS  PubMed  Google Scholar 

  • Jemiota-Rzeminska M, Latowski D, Strzalka K (2001) Incorporation of plastoquinone and ubiquinone into liposome membranes studied by HPLC analysis: the effect of side chain length and redox state of quinone. Chem Phys Lipids 110(1):85–94

    Article  CAS  PubMed  Google Scholar 

  • Katsikas H, Quinn PJ (1982) The distribution of ubiquinone-10 in phospholipid bilayers. Eur J Biochem 124(1):165–169

    Article  CAS  PubMed  Google Scholar 

  • Kirk G, Gruner S (1985) Lyotropic effects of alkanes and headgroup composition on the la-HII lipid liquid crystal phase transition: hydrocarbon packing versus intrinsic curvature. J de Phys 46(5):761–769

    Article  CAS  Google Scholar 

  • Klacsová M, Karlovská J, Uhríková D, Funari SS, Balgavy P (2014) Phase behavior of the DOPE + DOPC + alkanol system. Soft Matter 10(31):5842–5848

    Article  PubMed  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302(5647):1009–1014

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML (2009) Mobility and function of Coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787(6):563–573

    Article  CAS  PubMed  Google Scholar 

  • Osman C, Voelker DR, Langer T (2011) Making heads or tails of phospholipids in mitochondria. J Cell Biol 192(1):7–16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinn PJ (2012) Lipid–lipid interactions in bilayer membranes: married couples and casual liaisons. Prog Lipid Res 51(3):179–198

    Article  CAS  PubMed  Google Scholar 

  • Rappolt M, Hickel A, Bringezu F, Lohner K (2003) Mechanism of the lamellar/inverse hexagonal phase transition examined by high-resolution X-ray diffraction. Biophys J 84(5):3111–3122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rich PR, Harper R (1990) Partition coefficients of quinones and hydroquinones and their relation to biochemical reactivity. FEBS Lett 269(1):139–144

    Article  CAS  PubMed  Google Scholar 

  • Schneiter R, Brügger B, Sandhoff R, Zellnig G, Leber A, Lampl M, Athenstaedt K, Hrastnik C, Eder S, Daum G, Paltauf F, Wieland FT, Kohlwein SD (1999) Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J Cell Biol 146(4):741–754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seddon JM (1990) Structure of the inverted hexagonal (H II) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta 1031(1):1–69

    Article  CAS  PubMed  Google Scholar 

  • Tenchov B, Koynova R, Rapp G (1998) Accelerated formation of cubic phases in phosphatidylethanolamine dispersions. Biophys J 75:853–866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uhríková D, Hanulová M, Funari SS, Lacko I, Devínsky F, Balgavy P (2004) The structure of DNA-DLPC-cationic gemini surfactant aggregates: a small angle synchrotron X-ray diffraction study. Biophys Chem 111(3):197–204

    Article  PubMed  Google Scholar 

  • Wang X, Quinn PJ (2002) Cubic phase is induced by cholesterol in the dispersion of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine. Biochim Biophys Acta 1564(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Törnroth S, Luna-Chavez C, Miyoshi H, Léger C, Byrne B, Cecchini G, Iwata S (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299(5607):700–704

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Wollstein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wollstein, C., Winterhalter, M. & Funari, S.S. The location of coenzyme Q10 in phospholipid membranes made of POPE: a small-angle synchrotron X-ray diffraction study. Eur Biophys J 44, 373–381 (2015). https://doi.org/10.1007/s00249-015-1031-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1031-z

Keywords

Navigation