Skip to main content
Log in

Exploring the structural constraints at cleavage site of mucin 1 isoform through molecular dynamics simulation

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In silico alanine scanning mutagenesis on the cleavable isoform of mucin 1 revealed isoleucine 67 as one of the key factors contributing to the strain at the autoproteolytic cleavage site. In this study, we demonstrate the structural basis of isoleucine-induced rigidity towards the strain-driven autoproteolysis at G−1S+1 cleavage site of mucin 1. We further evaluated the gain in flexibility upon isoleucine 67 mutation through molecular dynamics and essential dynamics studies. The results show that the mutant exhibits stability in its secondary structural elements while the native displays a less-bonded network, however the cleavage site of native remains constrained. Essential dynamics revealed that large motions of the mutant were confined to the loop although the internal domain of the structure remains unaffected. Also, the mutation exerted a larger effect on the intraprotein interactions and consequently resulted in a stabilized motif at the cleavage. Analyses on MD trajectory conformations illustrate a completely disrupted motif in native as an effect of the peptide strain. The study also revealed that in mutant, the cleavage competent catalytic groups C=O and OG were in geometrical aspects unfavorable for a nucleophilic attack. The results support the earlier speculation that the presence of bulky isoleucine proximal G−1S+1 cleavage site limits the conformational sampling of residues and therefore maintains the residues in a torsionally restrained conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akhavan A, Crivelli SN, Singh M, Lingappa VR, Muschler JL (2008) SEA domain proteolysis determines the functional composition of dystroglycan. FASEB J 22:612–621

    Article  CAS  PubMed  Google Scholar 

  • Armen R, Alonso DO, Daggett V (2003) The role of alpha-, 3(10)-, and pi-helix in helix–> coil transitions. Protein Sci 12:1145–1157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barsky D, Foloppe D, Ahmadia S, Wilson DM, MacKerell AD Jr (2000) New insights into the structure of abasic DNA from molecular dynamics simulations. Nucleic Acids Res 28:2613–2626

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chikalov I, Yao P, Moshkov M, Latombe JC (2011) Learning probabilistic models of hydrogen bond stability from molecular dynamics simulation trajectories. BMC Bioinform 12:S34

    Article  Google Scholar 

  • Craveur P, Joseph AP, Poulain P, de Brevern AG, Rebehmed J (2013) Cis-trans isomerization of omega dihedrals in proteins. Amino Acids 45:279–289

    Article  CAS  PubMed  Google Scholar 

  • David CC (2012) Essential dynamics of proteins using geometrical simulations and subspace analysis. Dissertation, The University of North Carolina at Charlotte

  • DeLano WL (2009) The PyMOL molecular graphics system. http://www.pymol.org. Accessed 19 May 2014

  • Dobbins SE, Lesk VI, Sternberg MJ (2008) Insights into protein flexibility: the relationship between normal modes and conformational change upon protein–protein docking. Proc Natl Acad Sci USA 105:10390–10395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Falconi M, Biocca S, Novelli G, Desideri A (2007) Molecular dynamics simulation of human LOX-1 provides an explanation for the lack of OxLDL binding to the Trp150Ala mutant. BMC Struct Biol 7:73

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischer G, Kosinska-Eriksson U, Aponte-Santamaria C, Palmgren M, Geijer C, Hedfalk K, Hohmann S, de Groot BL, Neutze R, Lindkvist-Petersson K (2009) Crystal structure of a yeast aquaporin at 1.15 angstrom reveals a novel gating mechanism. PLoS Biol 7:e1000130

    Article  PubMed Central  PubMed  Google Scholar 

  • Friedman R, Caflisch A (2008) Pepsinogen-like activation intermediate of plasmepsin II revealed by molecular dynamics analysis. Proteins 73:814–827

    Article  CAS  PubMed  Google Scholar 

  • Hey NA, Meseguer M, Simon C, Smorodinsky NI, Wreschner DH, Ortiz ME, Aplin JD (2003) Transmembrane and truncated (SEC) isoforms of MUC1 in the human endometrium and Fallopian tube. Reprod Biol Endocrinol 13:1–2

    Google Scholar 

  • Huang W, Aboul-ela F, Jha S, Boyapati V (2008) In Computational study of conformational switching of s-box riboswitch. In: Proceedings of the 235th ACS National Meeting, New Orleans

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  PubMed  Google Scholar 

  • Johansson DGA, Macao B, Sandberg A, Hard T (2008) SEA domain autoproteolysis accelerated by conformational strain: mechanical aspects. J Mol Biol 377:1130–1143

    Article  CAS  PubMed  Google Scholar 

  • Kahn K, Bruice TC (2002) Parameterization of OPLS–AA force field for the conformational analysis of macrocyclic polyketides. J Comput Chem 23:977–996

    Article  CAS  PubMed  Google Scholar 

  • Karplus M, Kuriyan J (2005) Molecular dynamics and protein function. Proc Natl Acad Sci U S A 102:6679–6685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  CAS  PubMed  Google Scholar 

  • Kumari JL, Sudandiradoss C (2013) Computational investigation of theoretical models of cleavable and uncleavable mucin 1 isoforms. Mol BioSyst 9:2473–2488

    Article  PubMed  Google Scholar 

  • Leroy X, Buisine MP, Leteurtre E, Aubert S, Buob D, Porchet N, Copin MC (2006) MUC1 (EMA): a key molecule of carcinogenesis? Ann Pathol 26:257–266

    Article  PubMed  Google Scholar 

  • Levitin F, Stern O, Weiss M, Gil-Henn C, Ziv R, Prokocimer Z, Smorodinsky NI, Rubinstein DB, Wreschner DH (2005) The MUC1 SEA module is a self-cleaving domain. J Biol Chem 280:33374–33386

    Article  CAS  PubMed  Google Scholar 

  • Lorenzo-Seva U (2013) How to report the percentage of explained common variance in exploratory factor analysis. Technical Report. Department of Psychology, Universitat Rovira i Virgili, Tarragona

  • Macao B, Johansson DG, Hansson GC, Hard T (2006) Autoproteolysis coupled to protein folding in the SEA domain of the membrane-bound MUC1 mucin. Struct Mol Biol 13:71–76

    Article  CAS  Google Scholar 

  • Palmai-Pallag T, Khodabukus N, Kinarsky L, Leir SH, Sherman S, Hollingsworth MA, Harris A (2005) The role of the SEA (sea urchin sperm protein, enterokinase and agrin) module in cleavage of membrane-tethered mucins. FEBS J 272:2901–2911

    Article  CAS  PubMed  Google Scholar 

  • Peters GH, Bywater RP (1999) Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Protein Eng 12:747–754

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz-Motowidlo S, Wahlbom M, Wang X, Lagiewka J, Janowski R, Jaskolski M, Grubb A, Grzonka Z (2006) Checking the conformational stability of cystatin C and its L68Q variant by molecular dynamics studies: why is the L68Q variant amyloidogenic? J Struct Biol 154:68–78

    Article  CAS  PubMed  Google Scholar 

  • Shenai PM, Xu Z, Zhao Y (2012) Applications of Principal Component Analysis (PCA) in Materials Science. In: Sanguansat P (ed) Principal Component Analysis- Engineering Applications. InTech Publishers, Shanghai, pp 25–40

    Google Scholar 

  • Singh R, Bandyopadhyay D (2007) MUC1: a target molecule for cancer therapy: protein Engineering and Biotherapy. Cancer Biol Ther 6:481–486

    Article  CAS  PubMed  Google Scholar 

  • Tao Y, Rao ZH, Liu SQ (2010) Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. J Biomol Struct Dyn 28:143–158

    Article  CAS  PubMed  Google Scholar 

  • van der Spoel D, van Maaren PJ, Larsson P, Tîmneanu N (2006) Thermodynamics of hydrogen bonding in hydrophilic and hydrophobic media. Phys Chem B 110:4393–4398

    Article  Google Scholar 

  • Wreschner DH, McGuckin MA, Williams SJ, Baruch A, Yoeli M, Ziv R, Okun L, Zaretsky J, Smorodinsky N, Keydar I, Neophytou P, Stacey M, Lin HH, Gordon S (2002) Generation of ligand-receptor alliances by “SEA” module-mediated cleavage of membrane-associated mucin proteins. Protein Sci 11:698–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu D, Smith S, Mahan H, Jernigan RL, Wu Z (2011) Analysis of protein dynamics using local-DME calculations. Int J Bioinform Res Appl 7:146–161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiong B, Huang XQ, Shen XQ, Shen JH, Luo XM, Shen X, Jiang HL, Chen KX (2004) Conformational flexibility of beta-secretase: molecular dynamics simulation and essential dynamics analysis. Acta Pharmacol Sin 25:705–713

    CAS  PubMed  Google Scholar 

  • Yamaguchi H (1998) Essential dynamics of DNA containing a cis.syn cyclobutane thymine dimer lesion. Nucl Acids Res 26:1939–1946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang E, Hu XF, Xing PX (2007) Advances of MUC1 as a target for breast cancer immunotherapy. Histol Histopathol 22:905–922

    CAS  PubMed  Google Scholar 

  • Zaretsky JZ, Barnea I, Aylon Y, Gorivodsky M, Wreschner DH, Iafa K (2006) MUC1 gene overexpressed in breast cancer: structure and transcriptional activity of the MUC1 promoter and role of estrogen receptor alpha (ERalpha) in regulation of the MUC1 gene expression. Mol Cancer 5:57

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the management of VIT University for providing the facilities and encouragement to carry out this work.

Conflict of interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sudandiradoss.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, J.L.J., Sudandiradoss, C. Exploring the structural constraints at cleavage site of mucin 1 isoform through molecular dynamics simulation. Eur Biophys J 44, 309–323 (2015). https://doi.org/10.1007/s00249-015-1023-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1023-z

Keywords

Navigation