Skip to main content
Log in

Novel biophysical determination of miRNAs related to prostate and head and neck cancers

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In this study we have chosen a new approach and characterized three miRNAs (miR-23a, miR-34a and miR-320a) related to prostate cancer and head and neck cancer by spectral (circular dichroic and UV-absorption spectra) and electrochemical (voltammetry at graphite and mercury electrodes) methods. The spectral and voltammetric results, reflecting different nucleotide sequences of miRNAs, were complemented by the results of DNAs(U) having the same oligonucleotide sequences as miRNAs. The effect of the substitution of ribose for deoxyribose was shown and structural diversity was confirmed. The stability of RNA and DNA(U) was studied using CD and UV-absorption spectroscopy and melting points were calculated. MiRNA-320a with the highest content of guanine provided the highest melting point. With respect to the rapid progress of miRNA electrochemical sensors, our results will be useful for the research and development of sensitive, portable and time-efficient miRNA sensors, which will be able to diagnose cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ayaz L, Gorur A, Yaroglu HY, Ozcan C, Tamer L (2013) Differential expression of microRNAs in plasma of patients with laryngeal squamous cell carcinoma: potential early-detection markers for laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol 139:1499–1506

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2007) MicroRNAs: genomics, biogenesis, mechanism, and function (reprinted from Cell, vol 116, pg 281–297, 2004). Cell 131:11–29

    Google Scholar 

  • Bettazzi F, Hamid-Asl E, Esposito CL, Quintavalle C, Formisano N, Laschi S, Catuogno S, Iaboni M, Marrazza G, Mascini M, Cerchia L, De Franciscis V, Condorelli G, Palchetti I (2013) Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay. Anal Bioanal Chem 405:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Cao WG, Yang WP, Fan R, Li H, Jiang JS, Geng M, Jin YN, Wu YL (2014) miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway. Tumor Biol 35:1287–1295

    Article  CAS  Google Scholar 

  • Chakraborty S, Mazumdar M, Mukherjee S, Bhattacharjee P, Adhikary A, Manna A, Khan P, Sen A, Das T (2014) Restoration of p53/miR-34a regulatory axis decreases survival advantage and ensures Bax-dependent apoptosis of non-small cell lung carcinoma cells. FEBS Lett 588:549–559

    Article  CAS  PubMed  Google Scholar 

  • de Planell-Saguer M, Rodicio MC (2011) Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta 699:134–152

    Article  PubMed  Google Scholar 

  • Diederichs S, Haber DA (2006) Sequence variations of microRNAs in human cancer: alterations in predicted secondary structure do not affect processing. Cancer Res 66:6097–6104

    Article  CAS  PubMed  Google Scholar 

  • Driskell JD, Tripp RA (2010) Label-free SERS detection of microRNA based on affinity for an unmodified silver nanorod array substrate. Chem Commun 46:3298–3300

    Article  CAS  Google Scholar 

  • Gao ZQ, Yang ZC (2006) Detection of microRNAs using electrocatalytic nanoparticle tags. Anal Chem 78:1470–1477

    Article  CAS  PubMed  Google Scholar 

  • Hamidi-Asl E, Palchetti I, Hasheminejad E, Mascini M (2013) A review on the electrochemical biosensors for determination of microRNAs. Talanta 115:74–83

    Article  CAS  PubMed  Google Scholar 

  • Hsieh IS, Chang KC, Tsai YT, Ke JY, Lu PJ, Lee KH, Yeh SD, Hong TM, Chen YL (2013) MicroRNA-320 suppresses the stem cell-like characteristics of prostate cancer cells by downregulating the Wnt/beta-catenin signaling pathway. Carcinogenesis 34:530–538

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  • Kumar B, Yadav A, Lang J, Teknos TN, Kumar P (2012) Dysregulation of microRNA-34a expression in head and neck squamous cell carcinoma promotes tumor growth and tumor angiogenesis. Plos One 7:1–13

    Google Scholar 

  • Larson ED, Bednarski DW, Maizels N (2008) High-fidelity correction of genomic uracil by human mismatch repair activities. BMC Mol Biol 9:13

    Article  Google Scholar 

  • Liang YJ, Liu J, Feng ZH (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3:1–10

    Article  Google Scholar 

  • Liu C, Kelnar K, Liu BG, Chen X, Calhoun-Davis T, Li HW, Patrawala L, Yan H, Jeter C, Honorio S, Wiggins JF, Bader AG, Fagin R, Brown D, Tang DAG (2011) The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17:211–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marur S, D’Souza G, Westra WH, Forastiere AA (2010) HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 11:781–789

    Article  PubMed  Google Scholar 

  • Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK, Fedele V, Ginzinger D, Getts R, Haqq C (2006) Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5:1–14

    Article  Google Scholar 

  • Mirnezami AHF, Pickard K, Zhang L, Primrose JN, Packham G (2009) MicroRNAs: key players in carcinogenesis and novel therapeutic targets. Ejso 35:339–347

    Article  CAS  PubMed  Google Scholar 

  • Navratil R, Jelen F, Kayran YU, Trnkova L (2014) A pencil graphite electrode in situ modified by monovalent copper: a promising tool for the determination of methylxanthines. Electroanalysis 26:952–961

    Article  CAS  Google Scholar 

  • Obernosterer G, Martinez J, Alenius M (2007) Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc 2:1508–1514

    Article  CAS  PubMed  Google Scholar 

  • Peng YF, Gao ZQ (2011) Amplified detection of microRNA based on ruthenium oxide nanoparticle-initiated deposition of an insulating film. Anal Chem 83:820–827

    Article  CAS  PubMed  Google Scholar 

  • Raymond CK, Roberts BS, Garrett-Engele P, Lim LP, Johnson JM (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. Rna Publ Rna Soc 11:1737–1744

    Article  CAS  Google Scholar 

  • Ribeiro J, Sousa H (2014) MicroRNAs as biomarkers of cervical cancer development: a literature review on miR-125b and miR-34a. Mol Biol Rep 41:1525–1531

    Article  CAS  PubMed  Google Scholar 

  • Scapoli L, Palmieri A, Lo ML, Pezzetti F, Rubini C, Girardi A, Farinella F, Mazzotta M, Carinci F (2010) MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol 23:1229–1234

    CAS  PubMed  Google Scholar 

  • Sousa MML, Krokan HE, Slupphaug G (2007) DNA-uracil and human pathology. Mol Asp Med 28:276–306

    Article  CAS  Google Scholar 

  • Studnickova M, Trnkova L, Zetek J, Glatz Z (1989) Reduction of guanosine at a mercury-electrode. Bioelectrochem Bioenerg 21:83–86

    Article  CAS  Google Scholar 

  • Tang HB, Lee M, Sharpe O, Salamone L, Noonan EJ, Hoang CD, Levine S, Robinson WH, Shrager JB (2012) Oxidative stress-responsive microRNA-320 regulates glycolysis in diverse biological systems. Faseb J 26:4710–4721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trnkova L, Studnickova M, Palecek E (1980) Electrochemical-behavior of guanine and its derivatives. 1. Fast cyclic voltammetry of guanosine and calf thymus DNA. Bioelectrochem Bioenerg 7:643–658

    Article  CAS  Google Scholar 

  • Trnkova L, Jelen F, Postbieglova I (2003) Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides. I. Homooligodeoxynucleotides dA(9) and dC(9). Electroanalysis 15:1529–1535

    Article  CAS  Google Scholar 

  • Trnkova L, Jelen F, Postbieglova I (2006) Application of elimination voltammetry to the resolution of adenine and cytosine signals in oligonucleotides II. Hetero-oligodeoxynucleotides with different sequences of adenine and cytosine nucleotides. Electroanalysis 18:662–669

    Article  CAS  Google Scholar 

  • Varallyay E, Burgyan J, Havelda Z (2008) MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc 3:190–196

    Article  CAS  PubMed  Google Scholar 

  • Wang HB, Shen L, Li XM, Sun ML (2013) MicroRNAs contribute to the anticancer effect of 1′-acetoxychavicol acetate in human head and neck squamous cell carcinoma cell line HN4. Biosci Biotechnol Biochem 77:2348–2355

    Article  CAS  PubMed  Google Scholar 

  • Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45:309–316

    Article  PubMed  Google Scholar 

  • Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, Dahiya R (2012) MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer Cells. Plos One 7:1–12

    Google Scholar 

  • Yang F, Li QJ, Gong ZB, Zhou L, You N, Wang S, Li XL, Li JJ, An JZ, Wang DS, He Y, Dou KF (2014) MicroRNA-34a targets Bcl-2 and sensitizes human hepatocellular carcinoma cells to sorafenib treatment. Technol Cancer Res Treat 13:77–86

    CAS  PubMed  Google Scholar 

  • Zygogianni AG, Kyrgias G, Karakitsos P, Psyrri A, Kouvaris J, Kelekis N, Kouloulias V (2011) Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head Neck Oncol 3(2):1–12

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Central European Institute of Technology (CEITEC), Project CZ.1.05/1.1.00/02.0068, by the projects MUNI/A/1003/2013 and KONTAKT II (LH13053) of the Ministry of Education of the Czech Republic and IGA MZ NT14337-3/2013.

Conflict of interest

The authors declare they have no competing interests as defined by the European Biophysics Journal or other interests that might be perceived to influence the results and discussion reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Masarik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudcova, K., Trnkova, L., Kejnovska, I. et al. Novel biophysical determination of miRNAs related to prostate and head and neck cancers. Eur Biophys J 44, 131–138 (2015). https://doi.org/10.1007/s00249-015-1008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-015-1008-y

Keywords

Navigation