Skip to main content
Log in

Composition and Diversity of Gut Bacterial Community in Different Life Stages of a Leaf Beetle Gastrolina depressa

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Insect gut bacteria have a significant impact on host biology, which has a favorable or negative impact on insect fitness. The walnut leaf beetle (Gastrolina depressa) is a notorious pest in China, causing severe damage to Juglandaceae trees including Juglans regia and Pterocarya rhoifolia. To date, however, we know surprisingly little about the gut microbiota of G. depressa. This study used a high-throughput sequencing platform to investigate the gut bacterial community of G. depressa throughout its life cycle, including the 1st, 2nd, and 3rd instar larvae, as well as male, female, and pre-pregnant female adults. Our results showed that the diversity of the gut bacterial community in larvae was generally higher than that in adults, and young larvae (1st and 2nd larvae) possessed the most diversified and abundant community. Principal coordinate analysis results showed that the gut microbiota of adults cluster together, which is independent of the 1st and 2nd instar larvae. The main phyla were Proteobacteria and Firmicutes in the microbial community of G. depressa, while the dominant genera were Enterobacter, Rosenbergiella, Erwinia, Pseudomonas, and Lactococcus. The gut bacteria of G. depressa were mostly enriched in metabolic pathways (carbohydrate metabolism and amino acid metabolism) as revealed by functional prediction. This study contributes to a better knowledge of G. depressa’s gut microbiota and its potential interactions with the host insect, facilitating the development of a microbial-based pest management strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw full-length 16S rRNA gene sequences generated in the present study were deposited in the Sequence Read Archive (SRA) database (https:// submit.ncbi.nlm.nih.gov/subs/sra/) under accession number PRJNA768929.

References

  1. Moran NA, Ochman H, Hammer TJ (2019) Evolutionary and ecological consequences of gut microbial communities. Annu Rev Ecol Evol Syst 50(1):451–475. https://doi.org/10.1146/annurev-ecolsys-110617-062453

    Article  PubMed  PubMed Central  Google Scholar 

  2. Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37(5):699–735. https://doi.org/10.1111/1574-6976.12025

    Article  CAS  PubMed  Google Scholar 

  3. Consuegra J, Grenier T, Akherraz H, Rahioui I, Gervais H, da Silva P, Leulier F (2020) Metabolic cooperation among commensal bacteria supports Drosophila Juvenile growth under nutritional stress. iScience 23(6):101232. https://doi.org/10.1016/j.isci.2020.101232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A (2018) Fiber-associated spirochetes are major agents of hemicellulose degradation in the hindgut of wood-feeding higher termites. Proc Natl Acad Sci U S A 115(51):E11996–E12004. https://doi.org/10.1073/pnas.1810550115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zheng H, Powell JE, Steele MI, Dietrich C, Moran NA (2017) Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proc Natl Acad Sci U S A 114(18):4775–4780. https://doi.org/10.1073/pnas.1701819114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414. https://doi.org/10.1016/j.cmet.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  7. Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, Schmidt A (2017) Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol 26(15):4099–4110. https://doi.org/10.1111/mec.14186

    Article  CAS  PubMed  Google Scholar 

  8. Zhou F, Wu X, Xu L, Guo S, Chen G, Zhang X (2019) Repressed Beauveria bassiana infections in Delia antiqua due to associated microbiota. Pest Manag Sci 75(1):170–179. https://doi.org/10.1002/ps.5084

    Article  CAS  PubMed  Google Scholar 

  9. Zhou F, Xu L, Wu X, Zhao X, Liu M, Zhang X (2020) Symbiotic Bacterium-derived organic acids protect larvae from entomopathogenic fungal infection. mSystems 5(6). https://doi.org/10.1128/mSystems.00778-20

  10. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci USA 107(46):20051–20056. https://doi.org/10.1073/pnas.1009906107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Schretter CE, Vielmetter J, Bartos I, Marka Z, Marka S, Argade S, Mazmanian SK (2018) A gut microbial factor modulates locomotor behaviour in Drosophila. Nature 563(7731):402–406. https://doi.org/10.1038/s41586-018-0634-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jia Y, Jin S, Hu K, Geng L, Han C, Kang R, Pang Y, Ling E, Tan EK, Pan Y, Liu W (2021) Gut microbiome modulates Drosophila aggression through octopamine signaling. Nat Commun 12(1):2698. https://doi.org/10.1038/s41467-021-23041-y

  13. Xu L, Xu S, Sun L, Zhang Y, Luo J, Bock R, Zhang J (2021) Synergistic action of the gut microbiota in environmental RNA interference in a leaf beetle. Microbiome 9(1):98. https://doi.org/10.1186/s40168-021-01066-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci U S A 114(23):5994–5999. https://doi.org/10.1073/pnas.1703546114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, Ansari JM, Jefferson KK, Cava F, Jacobs-Wagner C, Fikrig E (2017) Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U S A 114(5):E781–E790. https://doi.org/10.1073/pnas.1613422114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma M, Tu C, Luo J, Lu M, Zhang S, Xu L (2021) Metabolic and immunological effects of gut microbiota in leaf beetles at the local and systemic levels. Integr Zool 16(3):313–323. https://doi.org/10.1111/1749-4877.12528

    Article  CAS  PubMed  Google Scholar 

  17. Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100(4):1567–1577. https://doi.org/10.1007/s00253-015-7186-9

    Article  CAS  PubMed  Google Scholar 

  18. Xie S, Lan Y, Sun C, Shao Y (2019) Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol 35(2):25. https://doi.org/10.1007/s11274-019-2599-8

    Article  PubMed  Google Scholar 

  19. Tikhe CV, Martin TM, Howells A, Delatte J, Husseneder C (2016) Assessment of genetically engineered Trabulsiella odontotermitis as a ‘Trojan Horse’ for paratransgenesis in termites. BMC Microbiol 16(1):202. https://doi.org/10.1186/s12866-016-0822-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao R, Han R, Qiu X, Yan X, Cao L, Liu X (2008) Cloning and heterologous expression of insecticidal-protein-encoding genes from Photorhabdus luminescens TT01 in Enterobacter cloacae for termite control. Appl Environ Microbiol 74(23):7219–7226. https://doi.org/10.1128/AEM.00977-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Arora AK, Douglas AE (2017) Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J Insect Physiol 103:10–17. https://doi.org/10.1016/j.jinsphys.2017.09.011

    Article  CAS  PubMed  Google Scholar 

  22. MsangoSoko K, Gandotra S, Chandel RK, Sharma K, Ramakrishinan B, Subramanian S (2020) Composition and diversity of gut bacteria associated with the eri silk moth, Samia ricini, (Lepidoptera: Saturniidae) as revealed by culture-dependent and metagenomics analysis. J Microbiol Biotechnol 30(9):1367–1378. https://doi.org/10.4014/jmb.2002.02055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X (2021) Bacterial inhibition on Beauveria bassiana contributes to microbiota stability in Delia antiqua. Front Microbiol 12:710800. https://doi.org/10.3389/fmicb.2021.710800

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao Y, Xue C-B, Yang L, Zhou C-G, Luo W-C (2010) Enzymatic dynamics of catechol oxidase from Gastrolina depressa. Pestic Biochem Physiol 96(2):57–62. https://doi.org/10.1016/j.pestbp.2009.09.007

    Article  CAS  Google Scholar 

  26. Kutcherov D (2016) Temperature effects on the development, body size, and sex ratio of the walnut leaf beetle Gastrolina depressa (Coleoptera: Chrysomelidae). J Asia Pac Entomol 19(1):153–158. https://doi.org/10.1016/j.aspen.2016.01.002

    Article  Google Scholar 

  27. Wang Q, Tang G (2018) The mitochondrial genomes of two walnut pests, Gastrolina depressa depressa and G depressa thoracica (Coleoptera: Chrysomelidae), and phylogenetic analyses. PeerJ 6:e4919. https://doi.org/10.7717/peerj.4919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang S-J, Park I-K (2011) Morphological and ecological study of Gastrolina depressa Baly (Coleoptera: Chrysomelidae). Korean journal of applied entomology 50(3):253–256. https://doi.org/10.5656/ksae.2011.08.0.37

    Article  Google Scholar 

  29. Chang KS, Morimoto N (1988) Life table studies of the walnut leaf beetle, Gastrolina depressa (Coleoptera: Chrysomelidae), with special attention to aggregation. Res Popul Ecol 30(2):297–313. https://doi.org/10.1007/BF02513251

    Article  Google Scholar 

  30. Kucuk RA (2020) Gut Bacteria in the holometabola: a review of obligate and facultative symbionts. J Insect Sci (Ludhiana) 20(4). https://doi.org/10.1093/jisesa/ieaa084

  31. Salem H, Kirsch R, Pauchet Y, Berasategui A, Fukumori K, Moriyama M, Cripps M, Windsor D, Fukatsu T, Gerardo NM (2020) Symbiont Digestive Range Reflects Host Plant Breadth in Herbivorous Beetles. Curr Biol 30(15):2875-2886 e2874. https://doi.org/10.1016/j.cub.2020.05.043

    Article  CAS  PubMed  Google Scholar 

  32. Bozorov TA, Rasulov BA, Zhang D (2019) Characterization of the gut microbiota of invasive Agrilus mali Matsumara (Coleoptera: Buprestidae) using high-throughput sequencing: uncovering plant cell-wall degrading bacteria. Sci Rep 9(1):4923. https://doi.org/10.1038/s41598-019-41368-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berry D, Ben Mahfoudh K, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol 77(21):7846–7849. https://doi.org/10.1128/AEM.05220-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall M, Beiko RG (2018) 16S rRNA Gene Analysis with QIIME2. Methods in molecular biology (Clifton, N.J.) 1849: 113–129. https://doi.org/10.1007/978-1-4939-8728-3_8

  39. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome.” Proc Natl Acad Sci USA 102(39):13950–13955. https://doi.org/10.1073/pnas.0506758102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, Simpson G, Solymos P, Stevens MHH, Wagner H (2015) vegan: Community Ecology Package. R package version 2.2–1.

  41. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chao A, Bunge J (2002) Estimating the number of species in a stochastic abundance model. Biometrics 58(3):531–539. https://doi.org/10.1111/j.0006-341x.2002.00531.x

    Article  PubMed  Google Scholar 

  43. Chapman MG, Underwood AJ (1999) Ecological patterns in multivariate assemblages:information and interpretation of negative values in ANOSIM tests. Mar Ecol Prog Ser 180:257–265. https://doi.org/10.3354/meps180257

    Article  Google Scholar 

  44. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27(4). https://doi.org/10.2307/1942268

  45. Warnes G, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Mächler M, Magnusson A, Möller S. (2005). gplots: Various R programming tools for plotting data (Vol. 2).

  46. Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph 20(12):1983–1992. https://doi.org/10.1109/TVCG.2014.2346248

    Article  PubMed  PubMed Central  Google Scholar 

  47. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12(6):R60. https://doi.org/10.1186/gb-2011-12-6-r60

    Article  PubMed  PubMed Central  Google Scholar 

  48. Douglas GM, Beiko RG, Langille MGI (2018) Predicting the functional potential of the microbiome from marker genes using PICRUSt. Methods Molec Biol 1849:169–177. https://doi.org/10.1007/978-1-4939-8728-3_11

    Article  CAS  Google Scholar 

  49. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31(9):814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38(6):685–688. https://doi.org/10.1038/s41587-020-0548-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jang S, Kikuchi Y (2020) Impact of the insect gut microbiota on ecology, evolution, and industry. Curr Opin Insect Sci 41:33–39. https://doi.org/10.1016/j.cois.2020.06.004

    Article  PubMed  Google Scholar 

  52. Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Wu C, Gao X, Luo J, Cui J (2021) Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae). Front Microbiol 12:670383. https://doi.org/10.3389/fmicb.2021.670383

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Sun S, Yang X, Cheng J, Wei H, Li Z, Michaud JP, Liu X (2020) Variability of gut microbiota across the life cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front Microbiol 11:1366. https://doi.org/10.3389/fmicb.2020.01366

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang M, Xiang X, Wan X (2020) Divergence in gut bacterial community among life stages of the rainbow stag beetle Phalacrognathus muelleri (Coleoptera: Lucanidae). Insects 11(10). https://doi.org/10.3390/insects11100719

  55. Huang S, Zhang H (2013) The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS ONE 8(2):e57169. https://doi.org/10.1371/journal.pone.0057169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Vries EJ, Jacobs G, Breeuwer JA (2001) Growth and transmission of gut bacteria in the Western flower thrips, Frankliniella occidentalis. J Invertebr Pathol 77(2):129–137. https://doi.org/10.1006/jipa.2001.5010

    Article  PubMed  Google Scholar 

  57. Shibl AA, Isaac A, Ochsenkuhn MA, Cardenas A, Fei C, Behringer G, Arnoux M, Drou N, Santos MP, Gunsalus KC, Voolstra CR, Amin SA (2020) Diatom modulation of select bacteria through use of two unique secondary metabolites. Proc Natl Acad Sci U S A 117(44):27445–27455. https://doi.org/10.1073/pnas.2012088117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yin C, Sun F, Rao Q, Zhang Y (2020) Chemical compositions and antimicrobial activities of the essential oil from Pterocarya stenoptera C. DC Natural Product Research 34(19):2828–2831. https://doi.org/10.1080/14786419.2019.1587426

    Article  CAS  PubMed  Google Scholar 

  59. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416

    Article  CAS  PubMed  Google Scholar 

  60. Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6:29505. https://doi.org/10.1038/srep29505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao C, Zhao H, Zhang S, Luo J, Zhu X, Wang L, Zhao P, Hua H, Cui J (2019) The developmental stage symbionts of the pea aphid-feeding Chrysoperla sinica (Tjeder). Front Microbiol 10:2454. https://doi.org/10.3389/fmicb.2019.02454

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ge SX, Shi FM, Pei JH, Hou ZH, Zong SX, Ren LL (2021) Gut bacteria associated with monochamus saltuarius (Coleoptera: Cerambycidae) and Their possible roles in host plant adaptations. Front Microbiol 12:687211. https://doi.org/10.3389/fmicb.2021.687211

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jones RT, Sanchez LG, Fierer N (2013) A cross-taxon analysis of insect-associated bacterial diversity. PLoS ONE 8(4):e61218. https://doi.org/10.1371/journal.pone.0061218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yun JH, Roh SW, Whon TW, Jung MJ, Kim MS, Park DS, Yoon C, Nam YD, Kim YJ, Choi JH, Kim JY, Shin NR, Kim SH et al (2014) Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80(17):5254–5264. https://doi.org/10.1128/AEM.01226-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang H, Cai W-M, Wang W-X, Yang J-M (2006) Molluscicidal activity of Nerium indicum Mill, Pterocarya stenoptera DC, and Rumex japonicum houtt on Oncomelania hupensis. Biomed Environ Sci 19(4):245–248

  66. Delaviz H, Mohammadi J, Ghalamfarsa G, Mohammadi B, Farhadi N (2017) A review study on phytochemistry and pharmacology applications of Juglans Regia Plant. Pharmacogn Rev 11(22):145–152. https://doi.org/10.4103/phrev.phrev_10_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schwindl S, Kraus B, Heilmann J (2019) Secondary metabolites from the leaves of Juglans regia L. Biochem Syst Ecol 83:130–136. https://doi.org/10.1016/j.bse.2019.01.014

    Article  CAS  Google Scholar 

  68. Abbott DW, Boraston AB (2008) Structural biology of pectin degradation by Enterobacteriaceae. Microbiol Mol Biol Rev 72(2):301–316. https://doi.org/10.1128/MMBR.00038-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, Lin J, Wang Y, Song F, Li Y, Lin H, You M (2017) Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol 8:663. https://doi.org/10.3389/fmicb.2017.00663

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mason CJ, Jones AG, Felton GW (2019) Co-option of microbial associates by insects and their impact on plant-folivore interactions. Plant Cell Environ 42(3):1078–1086. https://doi.org/10.1111/pce.13430

    Article  CAS  PubMed  Google Scholar 

  71. Behar A, Yuval B, Jurkevitch E (2005) Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol 14(9):2637–2643. https://doi.org/10.1111/j.1365-294X.2005.02615.x

    Article  CAS  PubMed  Google Scholar 

  72. Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AM, Caceres C, Bourtzis K (2015) Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: use of Enterobacter sp Larval Diet-Based Probiotic Applications. PLoS One 10(9):e0136459. https://doi.org/10.1371/journal.pone.0136459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Anand AA, Vennison SJ, Sankar SG, Prabhu DI, Vasan PT, Raghuraman T, Geoffrey CJ, Vendan SE (2010) Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. J Insect Sci (Ludhiana) 10:107. https://doi.org/10.1673/031.010.10701

    Article  Google Scholar 

  74. Gonzalez-Serrano F, Perez-Cobas AE, Rosas T, Baixeras J, Latorre A, Moya A (2020) The gut microbiota composition of the moth brithys crini reflects insect metamorphosis. Microb Ecol 79(4):960–970. https://doi.org/10.1007/s00248-019-01460-1

    Article  CAS  PubMed  Google Scholar 

  75. Koskinioti P, Ras E, Augustinos AA, Tsiamis G, Beukeboom LW, Caceres C, Bourtzis K (2019) The effects of geographic origin and antibiotic treatment on the gut symbiotic communities of Bactrocera oleae populations. Entomol Exp Appl 167(3):197–208. https://doi.org/10.1111/eea.12764

    Article  CAS  Google Scholar 

  76. Laviad-Shitrit S, Izhaki I, Whitman WB, Shapiro N, Woyke T, Kyrpides NC, Halpern M (2020) Draft genome of Rosenbergiella nectarea strain 8N4(T) provides insights into the potential role of this species in its plant host. PeerJ 8:e8822. https://doi.org/10.7717/peerj.8822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Briones-Roblero CI, Rodriguez-Diaz R, Santiago-Cruz JA, Zuniga G, Rivera-Orduna FN (2017) Degradation capacities of bacteria and yeasts isolated from the gut of Dendroctonus rhizophagus (Curculionidae: Scolytinae). Folia Microbiol (Praha) 62(1):1–9. https://doi.org/10.1007/s12223-016-0469-4

    Article  CAS  PubMed  Google Scholar 

  78. Setiaji J, Feliatra F, Teruna HY, Lukistyowati I, Suharman I, Muchlisin ZA, Johan TI (2020) Antibacterial activity in secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. F1000Res 9: 1491. https://doi.org/10.12688/f1000research.26215.1

  79. Kim JM, Choi MY, Kim JW, Lee SA, Ahn JH, Song J, Kim SH, Weon HY (2017) Effects of diet type, developmental stage, and gut compartment in the gut bacterial communities of two Cerambycidae species (Coleoptera). J Microbiol 55(1):21–30. https://doi.org/10.1007/s12275-017-6561-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (31971663) and the Young Elite Scientists Sponsorship Program by CAST (2020QNRC001).

Author information

Authors and Affiliations

Authors

Contributions

Letian Xu and Meiqi Ma designed the whole experiment. Meiqi Ma, Xiaotong Chen, and Siqun Li collected the samples and conducted all experiments. Meiqi Ma, Letian Xu, and Jing Luo analyzed the data and wrote the manuscript, and Runhua Han, Xiaotong Chen, Jing Luo, and Letian Xu revised and submitted the manuscript.

Corresponding author

Correspondence to Letian Xu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Meiqi Ma and Xiaotong Chen contribute equally to the study.

Supplementary Information

Below is the link to the electronic supplementary material.

248_2022_2054_MOESM1_ESM.pdf

Supplementary file1 Sample collection of G. depressa and 16S rRNA sequencing process. The whole bodies of first and second instar larvae were sampled due to their small size and beetles in other life stages were dissected to collect guts. Each sequencing sample contained three whole bodies or three guts. L1, 1st instar larvae; L2, 2nd instar larvae; L3, 3rd instar larvae; Ma, male adults; Fe, female adults; Pre, pre-pregnant female adults. (PDF 1119 KB)

248_2022_2054_MOESM2_ESM.pdf

Supplementary file2 Pan/Core species analysis at the ASV level to assess whether sequenced samples were enough. (a) Pan species. (b) Core species. L1, 1st instar larvae; L2, 2nd instar larvae; L3, 3rd instar larvae; Ma, male adults; Fe, female adults; Pre, pre-pregnant female adults. (PDF 461 KB)

Supplementary file3 The data of high throughout sequencing based on 16S rRNA gene. (XLS 62 KB)

Supplementary file4 Taxonomic information of 16S rRNA gene sequencing. (XLS 25 KB)

248_2022_2054_MOESM5_ESM.xls

Supplementary file5 The statistical table of difference by Kruskal-Wallis test with the Mann-Whitney U post hoc test, P < 0.05. (XLS 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Chen, X., Li, S. et al. Composition and Diversity of Gut Bacterial Community in Different Life Stages of a Leaf Beetle Gastrolina depressa. Microb Ecol 86, 590–600 (2023). https://doi.org/10.1007/s00248-022-02054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02054-0

Keywords

Navigation