Skip to main content

Advertisement

Log in

Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Thermokarst lakes have long been recognized as biogeochemical hotspots, especially as sources of greenhouse gases. On the Qinghai-Tibet Plateau, thermokarst lakes are experiencing extensive changes due to faster warming. For a deep understanding of internal lake biogeochemical processes, we applied metagenomic analyses to investigate the microbial diversity and their biogeochemical roles in sediment and water of thermokarst lakes in the Yellow River Source Area (YRSA). Sediment microbial communities (SMCs) had lower species and gene richness than water microbial communities (WMCs). Bacteria were the most abundant component in both SMCs and WMCs with significantly different abundant genera. The functional analyses showed that both SMCs and WMCs had low potential in methanogenesis but strong in aerobic respiration, nitrogen assimilation, exopolyphosphatase, glycerophosphodiester phosphodiesterases, and polyphosphate kinase. Moreover, SMCs were enriched in genes involved in anaerobic carbon fixation, aerobic carbon fixation, fermentation, most nitrogen metabolism pathways, dissimilatory sulfate reduction, sulfide oxidation, polysulfide reduction, 2-phosphonopropionate transporter, and phosphate regulation. WMCs were enriched in genes involved in assimilatory sulfate reduction, sulfur mineralization, phosphonoacetate hydrolase, and phosphonate transport. Functional potentials suggest the differences of greenhouse gas emission, nutrient cycling, and living strategies between SMCs and WMCs. This study provides insight into the main biogeochemical processes and their properties in thermokarst lakes in YRSA, improving our understanding of the roles and fates of these lakes in a warming world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

modified from Lauro et al. (2011) and Llorens-Marès et al. (2020)

Similar content being viewed by others

Data Availability

Raw sequence data were submitted to the database of CNCB-NGDC (National Genomics Data Center, China National Center for Bioinformation): https://bigd.big.ac.cn/gsa/browse/CRA004269, CRA004269, PRJCA005279.

References

  1. Kokelj SV, Jorgenson MT (2013) Advances in thermokarst research. Permafrost Periglac 24:108–119

    Article  Google Scholar 

  2. Farquharson LM, Mann DH, Grosse G, Jones BM, Romanovsky VE (2016) Spatial distribution of thermokarst terrain in Arctic Alaska. Geomorphology 273:116–133

    Article  Google Scholar 

  3. In’T Zandt MH, Liebner S, Welte CU (2020) Roles of thermokarst lakes in a warming world. Trends Microbiol 28:769–779

    Article  PubMed  Google Scholar 

  4. Manasypov RM, Pokrovsky OS, Shirokova LS, Auda Y, Zinner NS, Vorobyev SN, Kirpotin SN (2021) Biogeochemistry of macrophytes, sediments and porewaters in thermokarst lakes of permafrost peatlands, western Siberia. Sci Total Environ 763:144201

    Article  CAS  PubMed  Google Scholar 

  5. Chin KS, Lento J, Culp JM, Lacelle D, Kokelj SV (2016) Permafrost thaw and intense thermokarst activity decreases abundance of stream benthic macroinvertebrates. Global Change Biol 22:2715–2728

    Article  Google Scholar 

  6. Polishchuk Y, Bogdanov A, Polishchuk V, Manasypov R, Shirokova L, Kirpotin S, Pokrovsky O (2017) Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia lowland. Water-Sui 9:228

    Google Scholar 

  7. Reyes FR, Lougheed VL (2015) Rapid nutrient release from permafrost thaw in arctic aquatic ecosystems. Arct Antarct Alp Res 47:35–48

    Article  Google Scholar 

  8. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75

    Article  CAS  PubMed  Google Scholar 

  9. Karlsson JM, Lyon SW, Destouni G (2012) Thermokarst lake, hydrological flow and water balance indicators of permafrost change in Western Siberia. J Hydrol 464–465:459–466

    Article  Google Scholar 

  10. Pastick NJ, Jorgenson MT, Goetz SJ, Jones BM, Wylie BK, Minsley BJ, Genet H, Knight JF, Swanson DK, Jorgenson JC (2019) Spatiotemporal remote sensing of ecosystem change and causation across Alaska. Global Change Biol 25:1171–1189

    Article  Google Scholar 

  11. Anthony KW, von Deimling TS, Nitze I, Frolking S, Emond A, Daanen R, Anthony P, Lindgren P, Jones B, Grosse G (2018) 21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes. Nat Commun 9:3262

    Article  PubMed  PubMed Central  Google Scholar 

  12. Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, Weyhenmeyer GA, Winder M (2009) Lakes as sentinels of climate change. Limnol Oceanogr 54:2283–2297

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moser KA, Baron JS, Brahney J, Oleksy IA, Saros JE, Hundey EJ, Sadro S, Kopáček J, Sommaruga R, Kainz MJ, Strecker AL, Chandra S, Walters DM, Preston DL, Michelutti N, Lepori F, Spaulding SA, Christianson KR, Melack JM, Smol JP (2019) Mountain lakes: eyes on global environmental change. Global Planet Change 178:77–95

    Article  Google Scholar 

  14. Mueller DR, Van Hove P, Antoniades D, Jeffries MO, Vincent WF (2009) High Arctic lakes as sentinel ecosystems: cascading regime shifts in climate, ice cover, and mixing. Limnol Oceanogr 54:2371–2385

    Article  Google Scholar 

  15. Llorens-Marès T, Catalan J, Casamayor EO (2020) Taxonomy and functional interactions in upper and bottom waters of an oligotrophic high-mountain deep lake (Redon, Pyrenees) unveiled by microbial metagenomics. Sci Total Environ 707:135929

    Article  PubMed  Google Scholar 

  16. Arora-Williams K, Olesen SW, Scandella BP, Delwiche K, Spencer SJ, Myers EM, Abraham S, Sooklal A, Preheim SP (2018) Dynamics of microbial populations mediating biogeochemical cycling in a freshwater lake. Microbiome 6:165

    Article  PubMed  PubMed Central  Google Scholar 

  17. Martiny J, Bohannan B, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  PubMed  Google Scholar 

  18. Tanentzap AJ, Fitch A, Orland C, Emilson EJ, Yakimovich KM, Osterholz H, Dittmar T (2019) Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc Natl Acad Sci 116:24689–24695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ren Z, Qu XD, Peng WQ, Yu Y, Zhang M (2019) Nutrients drive the structures of bacterial communities in sediments and surface waters in the river-lake system of Poyang Lake. Water-Sui 11:e930

    Google Scholar 

  20. Llorens-Marès T, Yooseph S, Goll J, Hoffman J, Vila-Costa M (2015) Connecting biodiversity and potential functional role in modern euxinic environments by microbial metagenomics. Isme J 9:1648–1661

    Article  PubMed  PubMed Central  Google Scholar 

  21. Singh BK, Bardgett RD, Smith P, Reay DS (2010) Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat Rev Microbiol 8:779–790

    Article  CAS  PubMed  Google Scholar 

  22. Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS (2019) Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol 17:569–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18:35–46

    Article  CAS  PubMed  Google Scholar 

  24. Mangodo C, Adeyemi TOA, Bakpolor VR, Adegboyega DA (2020) Impact of microorganisms on climate change: a review. World News Nat Sci 31:36–47

    CAS  Google Scholar 

  25. Hutchins DA, Jansson JK, Remais JV, Rich VI, Singh BK, Trivedi P (2019) Climate change microbiology—problems and perspectives. Nat Rev Microbiol 17:391–396

    Article  CAS  PubMed  Google Scholar 

  26. Lauro FM, Demaere MZ, Yau S, Brown MV, Ng C, Wilkins D, Raftery MJ, Gibson JA, Andrews-Pfannkoch C, Lewis M, Hoffman JM (2011) An integrative study of a meromictic lake ecosystem in Antarctica. ISME J 5:879–895

    Article  CAS  PubMed  Google Scholar 

  27. Carter JL, Topping BR, Kuwabara JS, Balistrieri LS, Woods PF, Berelson WM, Fend SV (2003) Importance of sediment-water interactions in Coeur d’Alene Lake, Idaho: management implications. Environ Manage 32:348–359

    Article  PubMed  Google Scholar 

  28. Parker SR, West RF, Boyd ES, Feyhl-Buska J, Gammons CH, Johnston TB, Williams GP, Poulson SR (2016) Biogeochemical and microbial seasonal dynamics between water column and sediment processes in a productive mountain lake: Georgetown Lake, MT, USA. J Geophys Res Biogeosci 121:2064–2081

    Article  CAS  Google Scholar 

  29. Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roeske K, Sachse R, Scheerer C, Roeske I (2012) Microbial diversity and composition of the sediment in the drinking water reservoir Saidenbach (Saxonia, Germany). Syst Appl Microbiol 35:35–44

    Article  Google Scholar 

  31. Ren Z, Zhang C, Li X, Ma K, Feng KX, Zhang Z, Cui BS (2021) Bacterial communities present distinct co-occurrence networks in sediment and water of the thermokarst lakes in the Yellow River Source Area. Front Microbiol 12:e716732

    Article  Google Scholar 

  32. Kokelj SV, Jenkins RE, Milburn D, Burn CR, Snow N (2005) The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta region, Northwest Territories, Canada. Permafrost Periglac 16:343–353

    Article  Google Scholar 

  33. de Jong A, In TZM, Meisel OH, Jetten M, Dean JF, Rasigraf O, Welte CU (2018) Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments. Environ Microbiol 20:4314–4327

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vonk JE, Tank SE, Bowden WB, Laurion I, Vincent WF, Alekseychik P, Amyot M, Billet MF, Canário J, Cory RM, Deshpande BN (2015) Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–7167

    Article  CAS  Google Scholar 

  35. Bowden WB (2010) Climate change in the Arctic-permafrost, thermokarst, and why they matter to the non-Arctic world. Geogr Compass 4:1553–1566

    Article  Google Scholar 

  36. Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, Onstott TC, Whyte LG, Rivkina EM, Gilichinsky DA, Elias DA, Mackelprang R, Verberkmoes NC, Hettich RL, Wagner D, Wullschleger SD, Jansson JK (2012) Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6:709–712

    Article  CAS  PubMed  Google Scholar 

  37. Mackelprang R, Burkert A, Haw M, Mahendrarajah T, Conaway CH, Douglas TA, Waldrop MP (2017) Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J 11:2305–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serikova S, Pokrovsky OS, Laudon H, Krickov IV, Lim AG, Manasypov RM, Karlsson J (2019) High carbon emissions from thermokarst lakes of Western Siberia. Nat Commun 10:1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zou D, Zhao L, Sheng Y, Chen J, Hu G, Wu T, Wu J, Xie C, Wu X, Pang Q, Wang W, Du E, Li W, Liu G, Li J, Qin Y, Qiao Y, Wang Z, Shi J, Cheng G (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11:2527–2542

    Article  Google Scholar 

  40. Wu X, Nan Z, Zhao S, Zhao L, Cheng G (2018) Spatial modeling of permafrost distribution and properties on the Qinghai-Tibet Plateau. Permafrost Periglac 29:86–99

    Article  Google Scholar 

  41. Mountain RIEW (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430

    Article  Google Scholar 

  42. Yao T, Liu X, Wang N, Shi Y (2000) Amplitude of climatic changes in Qinghai-Tibetan Plateau. Chin Sci Bull 45:1236–1243

    Article  Google Scholar 

  43. Luo J, Niu F, Lin Z, Liu M, Yin G (2015) Thermokarst lake changes between 1969 and 2010 in the Beilu River Basin, Qinghai-Tibet Plateau, China. Sci Bull 60:556–564

    Article  Google Scholar 

  44. Zhang G, Yao T, Piao S, Bolch T, Xie H, Chen D, Gao Y, O’Reilly CM, Shum CK, Yang K, Yi S (2017) Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett 44:252–260

    Article  Google Scholar 

  45. Ren Z, Zhang C, Li X, Ma K, Cui BS (2022) Abundant and rare bacterial taxa structuring differently in sediment and water in thermokarst lakes in the Yellow River Source area, Qinghai-Tibet Plateau. Front Microbiol 13:e774514

    Article  Google Scholar 

  46. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109:21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martiny AC, Treseder K, Pusch G (2013) Phylogenetic conservatism of functional traits in microorganisms. ISME J 7:830–838

    Article  CAS  PubMed  Google Scholar 

  48. Luo X, Liu K, Shen Y, Yao G, Yang W, Mortimer PE, Gui H (2021) Fungal community composition and diversity vary with soil horizons in a subtropical forest. Front Microbiol 12:650440

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang Y, Ren Z, Ma PP, Wang ZM, Niu DC, Fu H, Elser JJ (2020) Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Sci Total Environ 722:e137910

    Article  Google Scholar 

  50. Qian Y, Cheng C, Drouillard K, Zhu Q, Feng H, He S, Fang Y, Qiao S, Kolenčíka M, Chang X (2019) Bioaccumulation and growth characteristics of Vallisneria natans (Lour.) Hara after chronic exposure to metal-contaminated sediments. Environ Sci Pollut R 26:20510–20519

    Article  CAS  Google Scholar 

  51. Dancer WS, Eliason R, Lekhakul S (1998) Microwave assisted soil and waste dissolution for estimation of total phosphorus. Commun Soil Sci Plan 29:1997–2006

    Article  CAS  Google Scholar 

  52. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  54. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283

    Article  CAS  PubMed  Google Scholar 

  56. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan. Accessed 01 Nov 2021

  58. R Core Team (2020) R: a language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. Accessed 01 Nov 2021

  59. Ren Z, Qu XD, Peng WQ, Yu Y, Zhang M (2019) Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. Peerj 7:e7318

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang Y, Wu Q, Yun H, Jin H, Zhang Z (2016) Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes. Global Planet Change 140:1–8

    Article  Google Scholar 

  61. Wan C, Gibson JJ, Shen S, Yi Y, Yi P, Yu Z (2019) Using stable isotopes paired with tritium analysis to assess thermokarst lake water balances in the Source Area of the Yellow River, northeastern Qinghai-Tibet Plateau, China. Sci Total Environ 689:1276–1292

    Article  CAS  PubMed  Google Scholar 

  62. Narancic B, Wolfe BB, Pienitz R, Meyer H, Lamhonwah D (2017) Landscape-gradient assessment of thermokarst lake hydrology using water isotope tracers. J Hydrol 545:327–338

    Article  CAS  Google Scholar 

  63. Ruiz-Gonzalez C, Pablo Nino-Garcia J, Del Giorgio PA (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecol Lett 18:1198–1206

    Article  PubMed  Google Scholar 

  64. Wen X, Yang S, Horn F, Winkel M, Wagner D, Liebner S (2017) Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front Microbiol 8:1339

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zitomer DH, Shrout JD (2000) High-sulfate, high-chemical oxygen demand wastewater treatment using aerated methanogenic fluidized beds. Water Environ Res 72:90–97

    Article  CAS  Google Scholar 

  66. Laanbroek HJ (2010) Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Ann Bot-London 105:141–153

    Article  CAS  Google Scholar 

  67. Heslop JK, Walter Anthony KM, Grosse G, Liebner S, Winkel M (2019) Century-scale time since permafrost thaw affects temperature sensitivity of net methane production in thermokarst-lake and talik sediments. Sci Total Environ 691:124–134

    Article  CAS  PubMed  Google Scholar 

  68. Du Toit A (2018) Permafrost thawing and carbon metabolism. Nat Rev Microbiol 16:519

    Article  PubMed  Google Scholar 

  69. Karlsson J, Giesler R, Persson J, Lundin E (2013) High emission of carbon dioxide and methane during ice thaw in high latitude lakes. Geophys Res Lett 40:1123–1127

    Article  CAS  Google Scholar 

  70. Hughes Allen L, Bouchard F, Laurion I, Séjourné A, Marlin C, Hatté C, Costard F, Fedorov A, Desyatkin A (2021) Seasonal patterns in greenhouse gas emissions from thermokarst lakes in Central Yakutia (Eastern Siberia). Limnol Oceanogr 66:98–116

    Article  Google Scholar 

  71. Karlsson J, Christensen TR, Crill P, Förster J, Hammarlund D, Jackowicz-Korczynski M, Kokfelt U, Roehm C, Rosén P (2010) Quantifying the relative importance of lake emissions in the carbon budget of a subarctic catchment. J Geophys Res Biogeosci 115:G03006-n/a

    Article  Google Scholar 

  72. Manasypov RM, Vorobyev SN, Loiko SV, Kritzkov IV, Shirokova LS, Shevchenko VP, Kirpotin SN, Kulizhsky SP, Kolesnichenko LG, Zemtzov VA, Sinkinov VV (2015) Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 12:3009–3028

    Article  Google Scholar 

  73. Boschker HT, Vasquez-Cardenas D, Bolhuis H, Moerdijk-Poortvliet TW, Moodley L (2014) Chemoautotrophic carbon fixation rates and active bacterial communities in intertidal marine sediments. PLoS ONE 9:e101443

    Article  PubMed  PubMed Central  Google Scholar 

  74. Santoro AL, Enrich-Prast A, Bastviken D, Tranvik L, Negrao SC (2021) Spatial and vertical distribution of aerobic and anaerobic dark inorganic carbon fixation in coastal tropical lake sediments. Aquat Sci 83:43

    Article  CAS  Google Scholar 

  75. Michelutti N, Wolfe AP, Vinebrooke RD, Rivard B, Briner JP (2005) Recent primary production increases in arctic lakes. Geophys Res Lett 32:19715

    Article  Google Scholar 

  76. Shirokova LS, Pokrovsky OS, Kirpotin SN, Dupré B (2009) Heterotrophic bacterio-plankton in thawed lakes of the northern part of Western Siberia controls the CO2 flux to the atmosphere. Int J Environ Stud 66:433–445

    Article  CAS  Google Scholar 

  77. Abbott BW, Jones JB, Godsey SE, Larouche JR, Bowden WB (2015) Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 12:3725–3740

    Article  Google Scholar 

  78. Fuchs M, Lenz J, Jock S, Nitze I, Jones BM, Strauss J, Günther F, Grosse G (2019) Organic carbon and nitrogen stocks along a thermokarst lake sequence in Arctic Alaska. J Geophys Res Biogeosci 124:1230–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hugelius G, Loisel J, Chadburn S, Jackson RB, Jones M, Macdonald G, Marushchak M, Olefeldt D, Packalen M, Siewert MB, Treat C, Turetsky M, Voigt C, Yu Z (2020) Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc Natl Acad Sci 117:20438–20446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Han Y, Dong S, Zhao Z, Sha W, Li S, Shen H, Xiao J, Zhang J, Wu X, Jiang X, Zhao J, Liu S, Dong Q, Zhou H, Yeomans JC (2019) Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma 343:263–268

    Article  CAS  Google Scholar 

  81. Xiong Q, Pan K, Zhang L, Wang Y, Li W, He X, Luo H (2016) Warming and nitrogen deposition are interactive in shaping surface soil microbial communities near the alpine timberline zone on the eastern Qinghai-Tibet Plateau, southwestern China. Appl Soil Ecol Sect Agric Ecosyst Environ 101:72–83

    Google Scholar 

  82. Cole J, Prairie YT, Caraco N, Mcdowell WH, Tranvil L, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  83. Elder CD, Xu X, Walker J, Schnell JL, Hinkel KM, Townsend-Small A, Arp CD, Pohlman JW, Gaglioti BV, Czimczik CI (2018) Greenhouse gas emissions from diverse Arctic Alaskan lakes are dominated by young carbon. Nat Clim Change 8:166–171

    Article  CAS  Google Scholar 

  84. Sepulveda-Jauregui A, Walter Anthony KM, Martinez-Cruz K, Greene S, Thalasso F (2015) Methane and carbon dioxide emissions from 40 lakes along a north–south latitudinal transect in Alaska. Biogeosciences 12:3197–3223

    Article  Google Scholar 

  85. Rathour R, Gupta J, Mishra A, Rajeev AC, Dupont CL, Thakur IS (2020) A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci Total Environ 731:139074

    Article  CAS  PubMed  Google Scholar 

  86. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: a review. Freshwater Biol 46:431–451

    Article  CAS  Google Scholar 

  87. Rabus R., Hansen T. A., F. W. 2013. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Rosenberg E., DeLong E.F., Lory S., Stackebrandt E., Thompson F. (eds) The prokaryotes. Springer, Berlin, Heidelberg

  88. Johnson SS, Chevrette MG, Ehlmann BL, Benison KC (2015) Insights from the metagenome of an acid salt lake: the role of biology in an extreme depositional environment. PLoS ONE 10:e0122869

    Article  PubMed  PubMed Central  Google Scholar 

  89. Frigaard N, Dahl C (2009) Sulfur metabolism in phototrophic sulfur bacteria. Adv Microb Physiology Poole RK 54:103–200

    Article  CAS  Google Scholar 

  90. Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  91. Stasi R, Neves HI, Spira B (2019) Phosphate uptake by the phosphonate transport system PhnCDE. Bmc Microbiol 19:79

    Article  PubMed  PubMed Central  Google Scholar 

  92. Diaz JM, Holland A, Sanders JG, Bulski K, Mollett D, Chou C, Phillips D, Tang Y, Duhamel S (2018) Dissolved organic phosphorus utilization by phytoplankton reveals preferential degradation of polyphosphates over phosphomonoesters. Front Mar Sci 5:380

    Article  Google Scholar 

  93. Ilikchyan IN, Mckay RM, Zehr JP, Dyhrman ST, Bullerjahn GS (2009) Detection and expression of the phosphonate transporter gene phnD in marine and freshwater picocyanobacteria. Environ Microbiol 11:1314–1324

    Article  CAS  PubMed  Google Scholar 

  94. Kutovaya OA, Mckay RML, Bullerjahn GS (2013) Detection and expression of genes for phosphorus metabolism in picocyanobacteria from the Laurentian Great Lakes. J Great Lakes Res 39:612–621

    Article  CAS  Google Scholar 

  95. Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillippy K, Palenik B, Paulsen IT (2009) Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. Isme J 3:835–849

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the start-up funding for the new introduced talents of the Beijing Normal University (28707–111032105) and the Guangdong Basic and Applied Basic Research Foundation (2021A1515010392).

Author information

Authors and Affiliations

Authors

Contributions

Z.R. designed the study, did the analyses, and prepared the manuscript, performed the field work and laboratory work; K.M. did the analyses and laboratory work; all the authors were involved in manuscript preparation.

Corresponding author

Correspondence to Ze Ren.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Z., Ma, K., Jia, X. et al. Metagenomics Unveils Microbial Diversity and Their Biogeochemical Roles in Water and Sediment of Thermokarst Lakes in the Yellow River Source Area. Microb Ecol 85, 904–915 (2023). https://doi.org/10.1007/s00248-022-02053-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02053-1

Keywords

Navigation