Skip to main content

Advertisement

Log in

Abundant and Rare Taxa of Planktonic Fungal Community Exhibit Distinct Assembly Patterns Along Coastal Eutrophication Gradient

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Revealing planktonic fungal ecology under coastal eutrophication is crucial to our understanding of microbial community shift in marine pollution background. We investigated the diversity, putative interspecies interactions, assembly processes and environmental responses of abundant and rare planktonic fungal communities along a eutrophication gradient present in the Beibu Gulf. The results showed that Dothideomycetes and Agaricomycetes were the predominant classes of abundant and rare fungi, respectively. We found that eutrophication significantly altered the planktonic fungal communities and affected the abundant taxa more than the rare taxa. The abundant and rare taxa were keystone members in the co-occurrence networks, and their interaction was enhanced with increasing nutrient concentrations. Stochastic processes dominated the community assembly of both abundant and rare planktonic fungi across the eutrophication gradient. Heterogeneous selection affected abundant taxa more than rare taxa, whereas homogenizing dispersal had a greater influence on rare taxa. Influences of environmental factors involving selection processes were detected, we found that abundant fungi were mainly influenced by carbon compounds, whereas rare taxa were simultaneously affected by carbon, nitrogen and phosphorus compounds in the Beibu Gulf. Overall, these findings highlight the distinct ecological adaptations of abundant and rare fungal communities to marine eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All sequence data were deposited in GenBank under BioProject Accession: PRJNA658447 (SAMN15871586-SAMN15871740).

Code Availability

Not applicable.

References

  1. Meyer-Reil L-A, Köster M (2000) Eutrophication of marine waters: effects on benthic microbial communities. Mar Pollut Bull 41:255–263. https://doi.org/10.1016/S0025-326X(00)00114-4

    Article  CAS  Google Scholar 

  2. Scheffer M, Carpenter SR (2003) Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol Evol 18:648–656. https://doi.org/10.1016/j.tree.2003.09.002

    Article  Google Scholar 

  3. Grossart H-P, Van den Wyngaert S, Kagami M et al (2019) Fungi in aquatic ecosystems. Nat Rev Microbiol 17:339–354. https://doi.org/10.1038/s41579-019-0175-8

    Article  CAS  PubMed  Google Scholar 

  4. Gutiérrez MH, Pantoja S, Tejos E, Quiñones RA (2011) The role of fungi in processing marine organic matter in the upwelling ecosystem off Chile. Mar Biol 158:205–219. https://doi.org/10.1007/s00227-010-1552-z

    Article  Google Scholar 

  5. Gao Z, Johnson ZI, Wang G (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120. https://doi.org/10.1038/ismej.2009.87

    Article  PubMed  Google Scholar 

  6. Sun JY, Song Y, Ma ZP et al (2017) Fungal community dynamics during a marine dinoflagellate (Noctiluca scintillans) bloom. Mar Environ Res 131:183–194. https://doi.org/10.1016/j.marenvres.2017.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Wang X, Singh P, Gao Z et al (2014) Distribution and diversity of planktonic fungi in the West Pacific Warm Pool. PLoS ONE 9:e101523. https://doi.org/10.1371/journal.pone.0101523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128. https://doi.org/10.1038/ismej.2016.24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang Y, Sen B, He Y et al (2018) Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front Microbiol 9:584. https://doi.org/10.3389/fmicb.2018.00584

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wan W, Liu S, Li X et al (2021) Bridging rare and abundant bacteria with ecosystem multifunctionality in salinized agricultural soils: from community diversity to environmental adaptation. mSystems 6:e01221–20. https://doi.org/10.1128/mSystems.01221-20

  12. Wu W, Logares R, Huang B, Hsieh C (2017) Abundant and rare picoeukaryotic sub-communities present contrasting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environ Microbiol 19:287–300. https://doi.org/10.1111/1462-2920.13606

    Article  CAS  PubMed  Google Scholar 

  13. Jiao S, Lu Y (2020) Abundant fungi adapt to broader environmental gradients than rare fungi in agricultural fields. Glob Chang Biol 26:4506–4520. https://doi.org/10.1111/gcb.15130

    Article  PubMed  Google Scholar 

  14. Jiao S, Chen W, Wei G (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol 26:5305–5317. https://doi.org/10.1111/mec.14218

    Article  CAS  PubMed  Google Scholar 

  15. Xue Y, Chen H, Yang JR et al (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12:2263–2277. https://doi.org/10.1038/s41396-018-0159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mo Y, Zhang W, Yang J et al (2018) Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J 12:2198–2210. https://doi.org/10.1038/s41396-018-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lai J, Jiang F, Ke K et al (2014) Nutrients distribution and trophic status assessment in the northern Beibu Gulf, China. Chinese J Oceanol Limnol 32:1128–1144. https://doi.org/10.1007/s00343-014-3199-y

    Article  CAS  Google Scholar 

  18. Han A, Dai M, Kao S-J et al (2012) Nutrient dynamics and biological consumption in a large continental shelf system under the influence of both a river plume and coastal upwelling. Limnol Oceanogr 57:486–502. https://doi.org/10.4319/lo.2012.57.2.0486

    Article  CAS  Google Scholar 

  19. Clesceri LS, Greenberg AE, Eaton AD (1998) Section 10200H. In: Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC

  20. Tian L-C, Wu S-M (1992) Determination of chemical oxygen demand in aqueous environmental samples by segmented flow-injection analysis. Anal Chim Acta 261:301–305. https://doi.org/10.1016/0003-2670(92)80206-M

    Article  CAS  Google Scholar 

  21. Teeling H, Fuchs BM, Becher D et al (2012) Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science 336:608–611. https://doi.org/10.1126/science.1218344

    Article  CAS  PubMed  Google Scholar 

  22. Li W, Wang MM, Wang XG et al (2016) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci Rep 6:26528. https://doi.org/10.1038/srep26528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kemp PF, Aller JY (2004) Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol Ecol 47:161–177. https://doi.org/10.1016/S0168-6496(03)00257-5

    Article  CAS  PubMed  Google Scholar 

  26. Ij GOOD (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264. https://doi.org/10.1093/biomet/40.3-4.237

    Article  Google Scholar 

  27. Gu Y, Wang Y, Lu S et al (2017) Long-term fertilization structures bacterial and archaeal communities along soil depth gradient in a paddy soil. Front Microbiol 8:1516. https://doi.org/10.3389/fmicb.2017.01516

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stegen JC, Lin X, Fredrickson JK et al (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079. https://doi.org/10.1038/ismej.2013.93

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. https://doi.org/10.1038/nrmicro2832

    Article  CAS  PubMed  Google Scholar 

  30. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351. https://doi.org/10.1126/science.1220529

    Article  CAS  PubMed  Google Scholar 

  31. Scheffer M, Carpenter SR, Lenton TM et al (2012) Anticipating critical transitions. Science 338:344–348. https://doi.org/10.1126/science.1225244

    Article  CAS  PubMed  Google Scholar 

  32. Morriën E, Hannula SE, Snoek LB et al (2017) Soil networks become more connected and take up more carbon as nature restoration progresses. Nat Commun 8:14349. https://doi.org/10.1038/ncomms14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Di Lonardo DP, Pinzari F, Lunghini D et al (2013) Metabolic profiling reveals a functional succession of active fungi during the decay of Mediterranean plant litter. Soil Biol Biochem 60:210–219. https://doi.org/10.1016/j.soilbio.2013.02.001

    Article  CAS  Google Scholar 

  34. Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468. https://doi.org/10.1073/pnas.96.4.1463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Konopka A, Lindemann S, Fredrickson J (2015) Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J 9:1488–1495. https://doi.org/10.1038/ismej.2014.251

    Article  PubMed  Google Scholar 

  36. Zhang X, Liu W, Schloter M et al (2013) Response of the abundance of key soil microbial nitrogen-cycling genes to multi-factorial global changes. PLoS ONE 8:e76500. https://doi.org/10.1371/journal.pone.0076500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Campbell BJ, Kirchman DL (2013) Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J 7:210–220. https://doi.org/10.1038/ismej.2012.93

    Article  CAS  PubMed  Google Scholar 

  38. Miki T, Yokokawa T, Matsui K (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc R Soc B Biol Sci 281:20132498. https://doi.org/10.1098/rspb.2013.2498

    Article  Google Scholar 

  39. Delgado-Baquerizo M, Giaramida L, Reich PB et al (2016) Lack of functional redundancy in the relationship between microbial diversity and ecosystem functioning. J Ecol 104:936–946. https://doi.org/10.1111/1365-2745.12585

    Article  Google Scholar 

  40. Zhou J, Deng Y, Zhang P et al (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci 111:E836–E845. https://doi.org/10.1073/pnas.1324044111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou J, Ning D (2017) Stochastic community assembly: does it matter in microbial ecology? Microbiol Mol Biol Rev 81:1–32. https://doi.org/10.1128/MMBR.00002-17

    Article  Google Scholar 

  42. Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating and mapping ecological processes influencing microbial community assembly. Front Microbiol 6:370. https://doi.org/10.3389/fmicb.2015.00370

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jia X, Dini-Andreote F, FalcãoSalles J (2018) Community assembly processes of the microbial rare biosphere. Trends Microbiol 26:738–747. https://doi.org/10.1016/j.tim.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  44. Zeng J, Jiao C, Zhao D et al (2019) Patterns and assembly processes of planktonic and sedimentary bacterial community differ along a trophic gradient in freshwater lakes. Ecol Indic 106:105491. https://doi.org/10.1016/j.ecolind.2019.105491

    Article  Google Scholar 

  45. Ren L, He D, Chen Z et al (2017) Warming and nutrient enrichment in combination increase stochasticity and beta diversity of bacterioplankton assemblages across freshwater mesocosms. ISME J 11:613–625. https://doi.org/10.1038/ismej.2016.159

    Article  PubMed  Google Scholar 

  46. Fukami T (2015) Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst 46:1–23. https://doi.org/10.1146/annurev-ecolsys-110411-160340

    Article  Google Scholar 

  47. Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263. https://doi.org/10.1016/j.tim.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  48. Chen W, Ren K, Isabwe A et al (2019) Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome 7:138. https://doi.org/10.1186/s40168-019-0749-8

    Article  PubMed  PubMed Central  Google Scholar 

  49. Verberk WCEP, van Noordwijk CGE, Hildrew AG (2013) Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshw Sci 32:531–547. https://doi.org/10.1899/12-092.1

    Article  Google Scholar 

  50. Sanchez G (2013) PLS Path Modeling with R. https://www.gastonsanchez.com/. Accessed 6 June 2019

  51. Wang G, Wang X, Liu X, Li Q (2012) Diversity and biogeochemical function of planktonic fungi in the ocean. Mol Subcell Biol 53:71–88. https://doi.org/10.1007/978-3-642-23342-5_4

    Article  Google Scholar 

  52. Dai T, Zhang Y, Tang Y et al (2016) Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiol Ecol 92:fiw150. https://doi.org/10.1093/femsec/fiw150

    Article  CAS  PubMed  Google Scholar 

  53. McGuire KL, Bent E, Borneman J et al (2010) Functional diversity in resource use by fungi. Ecology 91:2324–2332. https://doi.org/10.1890/09-0654.1

    Article  PubMed  Google Scholar 

  54. Vanden WA, Minges P, Sabat G et al (2006) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356. https://doi.org/10.1016/j.fgb.2006.01.003

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China no. 41966005, U20A2087; Guangxi Natural Science Foundation no. 2018GXNSFDA281006, 2017GXNSFBA198009; the ‘One Hundred Talents’ Project of Guangxi (grant no. 6020303891251); the Open Research Fund Program of Key Laboratory of Marine Ecosystem Dynamics, MNR (grant no. MED202014); the Foundation of Guangxi Academy of Sciences no. 2017YJ23003; Basic scientific research capacity improvement project of young and middle-aged teachers in colleges and universities, Guangxi no. 2021KY0391; Research on quantitative remote sensing technology for tropical vegetation and International Joint Laboratory of Ecological & Remote Sensing (AD20238059).

Author information

Authors and Affiliations

Authors

Contributions

HZ: Conceptualization, methodology, writing — review and editing and supervision. FQB: Review and editing and supervision. LH: Writing — review and editing and supervision. JT: Formal analysis and visualization. QX: Writing — review and editing. XL: Writing — review and editing. YH: Review and editing. SZ: Data curation. XC: Investigation, visualization and supervision (statistics). WH: Conceptualization and methodology. LP: Formal analysis, writing — review and editing and supervision. KD: Conceptualization and supervision. GJ: Conceptualization and writing — review and editing. NL: Conceptualization, methodology, formal analysis, investigation, data curation, writing — original draft, visualization and writing — review and editing.

Corresponding authors

Correspondence to Gonglingxia Jiang or Nan Li.

Ethics declarations

Ethics approval

Not applicable.

Consent to Participate

The authors declare their consent to participate in the present work.

Consent for Publication

The authors declare their consent for the publication of the present work.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1480 KB)

Supplementary file2 (XLSX 73 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Brearley, F.Q., Huang, L. et al. Abundant and Rare Taxa of Planktonic Fungal Community Exhibit Distinct Assembly Patterns Along Coastal Eutrophication Gradient. Microb Ecol 85, 495–507 (2023). https://doi.org/10.1007/s00248-022-01976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-01976-z

Keywords

Navigation