Skip to main content

Advertisement

Log in

Plant Growth Promoting Bacterial Consortium Induces Shifts in Indigenous Soil Bacterial Communities and Controls Listeria monocytogenes in Rhizospheres of Cajanus cajan and Festuca arundinacea

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The rhizosphere is a dynamic and complex interface between plant roots and microorganisms. Owing to exudates, a web of interactions establishes among the microbial members of this micro-environment. The present study explored the impact of a bacterial consortium (Azotobacter chroococcum, Bacillus megaterium and Pseudomonas fluorescens, ABP), on the fate of a human pathogen, Listeria monocytogenes EGD-e, in soil and in the rhizospheres of Cajanus cajan and Festuca arundinacea, in addition to its plant growth promoting effect. The study further assessed the impact these bioinoculants exert on the autochthonous soil bacterial communities. Experiments in sterilised soil inoculated with bioinoculants and L. monocytogenes revealed the inhibition of L. monocytogenes by approximately 80-fold compared to that without the consortium. Subsequently, experiments were conducted in non-sterile soil microcosms planted with C. cajan and F. arundinacea, and in bulk soil. The consortium led to a significant increase in plant growth in both plants and prevented growth of L. monocytogenes. However, the presence of resident soil bacterial communities overshadowed this inhibitory effect, and a sharp decline in L. monocytogenes populations (5–6 log reduction) was recorded under non-sterile soil conditions. A shift in the soil resident bacterial communities was observed upon amendment with the bioinoculants. A significant increase of potential Plant Growth Promoting Rhizobacteria (PGPR) and biocontrol agents was observed, while the abundance of potential phytopathogens dropped. The present study opens up new avenues for the application of such a consortium given their dual benefits of plant growth promotion and restricting phytopathogens as well as human pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and materials availability

Not applicable.

Code availability

Not applicable.

References

  1. Vig K, Singh DK, Agarwal HC, Dhawan AK, Dureja P (2008) Soil microorganisms in cotton fields sequentially treated with insecticides. Ecotoxicol Environ Saf 69:263–276

    Article  CAS  PubMed  Google Scholar 

  2. Hinsinger P, Bengough AG, Vetterlein D, Young IM (2009) Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil 321:117–152

    Article  CAS  Google Scholar 

  3. Schreiter S, Ding G, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K (2014) Effect of the soil-type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:1–13

    Article  Google Scholar 

  4. Mendes A, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663

    Article  CAS  PubMed  Google Scholar 

  5. Mahmood S, Rehman Y, Hasnain S (2015) Cross-kingdom pathogenicity across plants and human beings. J Bacteriol Parasitol 6:e124

    Google Scholar 

  6. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598

    Article  Google Scholar 

  7. Winding A, Binnerup SJ, Pritchard H (2004) Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol Ecol 47:129–141

    Article  CAS  PubMed  Google Scholar 

  8. Sharma R, Paliwal JS, Chopra P, Dogra D, Pooniya V, Bisaria VS, Swarnalakshmi K, Sharma S (2017) Survival, efficacy and rhizospheric effects of bacterial inoculants on Cajanus cajan. Agric Ecosyst Environ 240:244–252

    Article  Google Scholar 

  9. Kumar V, Kumar A, Verma VC, Gond SK, Kharwar RN (2007) Induction of defense enzymes in Pseudomonas fluorescens treated chickpea roots against Macrophomina phaseolina. Indian Phytopath 60:289–295

    CAS  Google Scholar 

  10. Vivant A, Garmyn D, Maron P, Nowak V, Piveteau P (2013) Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil. PLoS ONE 8:e76991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ajayeoba TA, Atanga OO, Obadina AO, Bankole MO, Adelowo OO (2015) The incidence and distribution of Listeria monocytogenes in ready-to-eat vegetables in South-Western Nigeria. Food Sci Nutr 4:59–66

    Article  PubMed  PubMed Central  Google Scholar 

  12. Oyinloye MA, David OM, Muhammad A, Famurewa O (2018) Occurrence and molecular characterisation of Listeria species in some fresh-cut vegetables and environmental samples. J Adv Microbiol 12:1–12

    Article  Google Scholar 

  13. Salama PJ, Embarek PKB, Bagaria J, Fall IS (2018) Learning from listeria: safer food for all. Lancet 391:2305–2306

    Article  PubMed  Google Scholar 

  14. Sharma R, Gal L, Garmyn D, Bisaria VS, Sharma S, Piveteau P (2020) Evidence of biocontrol activity of bioinoculants against a human pathogen Listeria monocytogenes. Front Microbiol 11:350

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar CV Sameer, Mula MG, Singh IP, Saxena RK, Rao NVPRG, Varshney RK (2014) Pigeonpea perspective in India. 1st Philippine pigeonpea congress, Mariano Marcos State University, Batac, Ilocos Norte, Philippines, December 16–18

  16. Sharma R, Pooniya V, Bisaria VS, Swarnalakshmi K, Sharma S (2020) Bioinoculants play a significant role in shaping the rhizospheric microbial community: a field study with Cajanus cajan. World J Microbiol Biotechnol 36:44

    Article  CAS  PubMed  Google Scholar 

  17. Lemunier M, Francou C, Rousseaux S, Houot S, Dantigny P, Piveteau P, Guzzo J (2005) Long-term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl Environ Microbiol 71:5779–5786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Locatelli A, Spor A, Jolivet C, Piveteau P, Hartmann A (2013) Biotic and abiotic soil properties influence survival of Listeria monocytogenes in soil. PLoS ONE 8:e75969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi S, Tomita J, Nishioka K, Hisada T, Nishijima M (2014) Development of a prokaryotic universal primer for simultaneous analysis of Bacteria and Archaea using next-generation sequencing. PLoS ONE 9:e105592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. NIH Public Access 7:335–336

    CAS  Google Scholar 

  21. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. Peer J 4:1–22

    Article  Google Scholar 

  22. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. ISCB 26:2460–2461

    CAS  Google Scholar 

  24. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618

    Article  CAS  PubMed  Google Scholar 

  25. Sharma R, Shrivas VL, Sharma S (2021) Effect of substitution of chemical fertilizer by bioinoculants on plant performance and rhizospheric bacterial community: case study with Cajanus cajan. Braz J Microbiol 52:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  27. Ricci A et al (2018) Listeria monocytogenes contamination of ready-to-eat foods and the risk for human health in the EU. EFSA J 16:5134

    Google Scholar 

  28. Elton CS (1958) The ecology of invasions by animals and plants. London: University of Chicago Press, p 196

    Book  Google Scholar 

  29. Maury MM, Bracq-Dieye H, Huang L, Vales G, Lavina M, Thouvenot P, Disson O, Leclercq A, Brisse S, Lecuit M (2019) Hypervirulent Listeria monocytogenes clones’ adaptation to mammalian gut accounts for their association with dairy products. Nat Commun 10:2488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Maury MM et al (2016) Uncovering Listeria monocytogenes hypervirulence by harnessing its biodiversity. Nat Genet 48:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nagendra H (2002) Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr 22:175–186

    Article  Google Scholar 

  32. Edwards CA, Subler S, Parmelee R, Knacker T, Pokarzhevskii AA (1997) Use of soil microcosms in assessing the effect of pesticides on soil ecosystems. Environ Behav Crop Protect Chem 28:435–451

    Google Scholar 

  33. Kamutando CN, Vikram S, Kamgan-Nkuekam G, Makhalanyane TP, Greve M, Roux JJ, Richardson DM, Cowan D, Valverde A (2017) Soil nutritional status and biogeography influence rhizosphere microbial communities associated with the invasive tree Acacia dealbata. Sci Rep 7:6472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ghirardi S, Dessaint F, Mazurier S, Corberand T, Raaijmakers JM, Meyer J, Dessaux Y, Lemanceau P (2012) Identification of traits shared by rhizosphere-competent strains of fluorescent pseudomonads. Microb Ecol 64:725–737

    Article  CAS  PubMed  Google Scholar 

  35. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bardgett RD, Mommer L, De Vries FT (2014) Going underground: root traits as drivers of ecosystem processes. Trends Ecol Evol 29:692–699

    Article  PubMed  Google Scholar 

  37. Tan S, Jiang Y, Song S, Huang J, Ling N, Xu Y, Shen Q (2013) Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanacearum and promoting tomato plant growth. Crop Prot 43:134–140

    Article  Google Scholar 

  38. Zimmermann W (1988) Xylanolytic enzyme activities produced by mesophilic and thermophilic Actinomycetes grown on graminaceous xylan and lignocellulose. FEMS Microbiol Lett 55:181–185

    Article  CAS  Google Scholar 

  39. Ji GH, Wei LF, He YQ, Wu YP, Bai XH (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13–1. Biol Control 45:288–296

    Article  Google Scholar 

  40. Siddiqui I, Shaukat S (2002) Mixtures of plant disease suppressive bacteria enhance biological control of multiple tomato pathogens. Biol Fert Soils 36:260–268

    Article  Google Scholar 

  41. Ardley JK, Parker MA, De Meyer SE, Trengove RD, O’Hara GW, Reeve WG, Yates RJ, Dilworth MJ, Willems A, Howieson JG (2012) Microvirga lupini sp. nov., Microvirga lotononidis sp. nov. and Microvirga zambiensis sp. nov. are alphaproteobacterial root-nodule bacteria that specifically nodulate and fix nitrogen with geographically and taxonomically separate legume hosts. Int J Syst Evol Microbiol 62:2579–2588

    Article  CAS  PubMed  Google Scholar 

  42. Kilic-Ekici O, Yuen GY (2004) Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:446–455

    Article  CAS  Google Scholar 

  43. Yuen G, Zhang Z (2001) Control of brown patch disease using the bacterium Stenotrophomonas maltophilia strain C3 and culture fluid. ITSRJ 9:742–747

    Google Scholar 

  44. Mitter EK, Tosi M, Obregon D, Dunfield KE, Germida JJ (2021) Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Front Sustain Food Syst (In proceedings)

  45. Wessen E, Hallin S, Philippot L (2010) Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management. Soil Biol Biochem 42:1759–1765

    Article  CAS  Google Scholar 

  46. Petric I, Bru D, Udikovic-Kolic N, Hrsak D, Philippot L, Martin-Laurent F (2011) Evidence for shifts in the structure and abundance of the microbial community in a long-term PCB-contaminated soil under bioremediation. J Hazard Mater 195:254–260

    Article  CAS  PubMed  Google Scholar 

  47. Romdhane S, Devers-Lamrani M, Barthelmebs L, Calvayrac C, Bertrand C, Cooper JF et al (2016) Ecotoxicological impact of the bioherbicide Leptospermone on the microbial community of two arable soils. Front Microbiol 7:775

    Article  PubMed  PubMed Central  Google Scholar 

  48. Storck V, Nikolaki S, Perruchon C, Chabanis C, Sacchi A, Pertile G, Baguelin C, Karas PA, Spor A, Devers-Lamrani M, Papadopoulou ES, Silbourg O, Malandain C, Trevisan M, Ferrari F, Karpouzas DG, Tsiamis G, Martin-Laurent F (2018) Lab to field assessment of the ecotoxicological impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the diversity and composition of the soil bacterial community. Front Microbiol 1:1–13

    Google Scholar 

  49. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  50. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, De Vos P, Heylen K, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458:623–626

    Article  CAS  PubMed  Google Scholar 

  51. Lindström S, Rowe O, Timonen S, Sundström L, Johansson H (2018) Trends in bacterial and fungal communities in ant nests observed with Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and Next Generation Sequencing (NGS) techniques–validity and compatibility in ecological studies. Peer J 1–24

Download references

Funding

This work was supported by the Department of Biotechnology, Govt. of India (Grant No. BT/PR5499/AGR/21/355/2012). RS wishes to acknowledge the fellowship received from the Council of Scientific and Industrial Research, India, towards her doctoral work, and the fellowship received from Raman-Charpak student exchange programme for this work.

Author information

Authors and Affiliations

Authors

Contributions

PP and SS conceptualized, supervised and administered the project; RS performed the data curation; RS, PP, SS, LG and DG performed the formal analysis; PP and SS acquired the funding; RS and co-authors investigated the study; RS, PP and SS wrote the original draft; all co-authors reviewed and edited and approved the manuscript.

Corresponding author

Correspondence to Pascal Piveteau.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 711 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, R., Gal, L., Garmyn, D. et al. Plant Growth Promoting Bacterial Consortium Induces Shifts in Indigenous Soil Bacterial Communities and Controls Listeria monocytogenes in Rhizospheres of Cajanus cajan and Festuca arundinacea. Microb Ecol 84, 106–121 (2022). https://doi.org/10.1007/s00248-021-01837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-021-01837-1

Keywords

Navigation