Skip to main content

Advertisement

Log in

Molecular and Serological Survey of the Cat-Scratch Disease Agent (Bartonella henselae) in Free-Ranging Leopardus geoffroyi and Leopardus wiedii (Carnivora: Felidae) From Pampa Biome, Brazil

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The genus Bartonella comprises emerging bacteria that affect humans and other mammals worldwide. Felids represent an important reservoir for several Bartonella species. Domestic cats are the main reservoir of Bartonella henselae, the agent of cat scratch disease (CSD). It can be transmitted directly by scratches and bites from infected cats and via cat fleas. This study aims to investigate the circulation of Bartonella spp. in free-ranging Neotropical wild felids from Southern Brazil using serological and molecular methods. In this study, 53 live-trapped free-ranging wild felids were sampled, 39 Leopardus geoffroyi and 14 Leopardus wiedii, from five municipalities in the Rio Grande, do Sul state, southern Brazil. All captured animals were clinically healthy. Two blood samples of L. geoffroyi were positive, by PCR, for the presence of B. henselae DNA. Conversely, none of L. wiedii blood samples were positive when tested using PCR. Indirect immunofluorescence assay (IFA) showed that 28% of serum samples of wild felids were reactive (seropositive) for B. henselae by immunofluorescence, with titers ranging from 64 to 256. The results presented here provide the first evidence of a Bartonella-enzootic cycle involving L. geoffroyi and L. wiedii, which may account for the spillover of the emerging zoonotic pathogen B. henselae for the indigenous fauna in Southern Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Tompkins DM, Carver S, Jones ME, Krkošek M, Skerratt LF (2015) Emerging infectious diseases of wildlife: a critical perspective. Trends Parasitol 31(4):149–159. https://doi.org/10.1016/j.pt.2015.01.007

    Article  PubMed  Google Scholar 

  2. Gilbertson ML, Carver S, VandeWoude S, Crooks KR, Lappin MR, Craft ME (2016) Is pathogen exposure spatially autocorrelated? Patterns of pathogens in puma (Puma concolor) and bobcat (Lynx rufus). Ecosphere 7(11):01558. https://doi.org/10.1002/ecs2.1558

    Article  Google Scholar 

  3. Murray M (1999) The parasites, predators, places and people I have known: a great adventure. Vet Parasitol 81(2):149–158. https://doi.org/10.1016/s0304-4017(98)00242-8

    Article  CAS  PubMed  Google Scholar 

  4. Aguirre AA, Tabor GM (2008) Global factors driving emerging infectious diseases. Ann N Y Acad Sci 1149:1–3. https://doi.org/10.1196/annals.1428.052

    Article  PubMed  Google Scholar 

  5. Woodford MH (2009) Veterinary aspects of ecological monitoring: the natural history of emerging infectious diseases of humans, domestic animals and wildlife. Trop Anim Health Prod 41(7):1023–1033. https://doi.org/10.1007/s11250-008-9269-4

    Article  PubMed  Google Scholar 

  6. Keesing F, Belden LK, Daszak P, Dobson A, Harvell CD, Holt RD, Hudson P, Jolles A, Jones KE, Mitchell CE, Myers SS, Bogich T, Ostfeld RS (2010) Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468(7324):647–652. https://doi.org/10.1038/nature09575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson RA (2013) Parasite zoonoses and wildlife: one health, spillover and human activity. Int J Parasitol 43(12–13):1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  8. Overbeck GE, Müller SC, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC et al (2007) Brazil's neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9(2):101–116. https://doi.org/10.1016/j.ppees.2007.07.005

    Article  Google Scholar 

  9. Roesch LFW, Vieira FCB, Pereira VA, Schunemann AL, Teixeira IF, Senna AJT, Stefenon VM (2009) The Brazilian pampa: a fragile biome. Diversity 1(2):182–198. https://doi.org/10.3390/d1020182

    Article  Google Scholar 

  10. Trigo TC, Manoel LdeFR, Kasper CB(2013a) in Mamiferos do Rio Grande so Sul. Weber MDM, Roman C, Cáceres NC. Carnívoros Continentais Pp Em: Mamíferos do Rio Grande do Sul. UFSM

  11. Trigo T, Schneider A, Lehugeur L, Silveira L, Freitas TO, Eizirik E (2013b) Molecular data reveal complex hybridization and a cryptic species of Neotropical wild cat. Curr Biol 23(24):2528–2533. https://doi.org/10.1016/j.cub.2013.10.046

    Article  CAS  PubMed  Google Scholar 

  12. Queirolo D (2016) Diversidade e padrões de distribuição de mamíferos dos campos do Uruguai e sul do Brasil. Bol Soc Zool Uruguay 25:92–247

    Google Scholar 

  13. Peters FB, Mazim FD, Favarini MO, Oliveira T, G. (2017) Leopardus pardalis (Linnaeus, 1758) (Carnivora, Felidae) nos campos do extremo sul do Brasil: expansão ou recolonização do Pampa? Rev Bras Zoociências 18(3):51–60

    Article  Google Scholar 

  14. Kitchener AC, Breitenmoser-Würsten C, Eizirik E, Gentry A, Werdelin L, Wilting A, et al (2017) A revised taxonomy of the Felidae: the final report of the Cat Classification Task Force of the IUCN Cat Specialist Group. Cat News

  15. Dall'Agnol B, Souza UA, Weck B, Trigo TC, Jardim MMA, Costa FB, Labruna MB, Peters FB, Favarini MO, Mazim FD, Ferreira CAS, Reck J (2018) Rickettsia parkeri in free-ranging wild canids from Brazilian Pampa. Transbound Emerg Dis 65(2):224–230. https://doi.org/10.1111/tbed.12743

    Article  Google Scholar 

  16. Souza VK, Dall’Agnol B, Souza UA, Webster A, Peters FB, Favarini MO et al (2019) Detection of Rangelia vitalii (Piroplasmida: Babesiidae) in asymptomatic free-ranging wild canids from the Pampa biome, Brazil. Parasitol Res 118(4):1337–1342. https://doi.org/10.1007/s00436-019-06245-6

    Article  PubMed  Google Scholar 

  17. Dubey JP, Lappin MR, Kwok OC, Mofya S, Chikweto A, Baffa A et al (2009) Seroprevalence of Toxoplasma gondii and concurrent Bartonella spp., feline immunodeficiency virus, and feline leukemia virus infections in cats from Grenada, West Indies. J Parasitol 95(5):1129–1133. https://doi.org/10.1645/GE-2114.1

    Article  CAS  PubMed  Google Scholar 

  18. Chomel BB, Kikuchi Y, Martenson JS, Roelke-Parker ME, Chang CC, Kasten RW, Foley JE, Laudre J, Murphy K, Swift PK, Kramer VL, O’brien SJ (2004) Seroprevalence of Bartonella infection in American free-ranging and captive pumas (Felis concolor) and bobcats (Lynx rufus). Vet Res 35(2):233–241. https://doi.org/10.1051/vetres:2004001

    Article  PubMed  Google Scholar 

  19. Filoni C, Catão-Dias JL, Bay G, Durigon EL, Jorge RSP, Lutz H, Hofmann-Lehmann R (2006) First evidence of feline herpesvirus, calicivirus, parvovirus, and Ehrlichia exposure in Brazilian free-ranging felids. J Wildl Dis 42(2):470–477. https://doi.org/10.7589/0090-3558-42.2.470

    Article  PubMed  Google Scholar 

  20. Filoni C, Catão-Dias JL, Cattori V, Willi B, Meli ML, Corrêa SHR, Marques MC, Adania CH, Silva JCR, Marvulo MFV, Neto JSF, Durigon EL, de Carvalho VM, Coutinho SD’A, Lutz H, Hofmann-Lehmann R (2012) Surveillance using serological and molecular methods for the detection of infectious agents in captive Brazilian neotropic and exotic felids. J Vet Diagn Investig 24(1):166–173. https://doi.org/10.1177/1040638711407684

    Article  Google Scholar 

  21. Breitschwerdt EB, Kordick DL (2000) Bartonella infection in animals: carriership, reservoir potential, pathogenicity, and zoonotic potential for human infection. Clin Microbiol Rev 13(3):428–438. https://doi.org/10.1128/cmr.13.3.428-438.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chomel BB, Kasten RW, Sykes JE, Boulouis HJ, Breitschwerdt EB (2003) Clinical impact of persistent Bartonella bacteremia in humans and animals. Ann N Y Acad Sci 990(1):267–278. https://doi.org/10.1111/j.1749-6632.2003.tb07376.x

    Article  PubMed  Google Scholar 

  23. Chomel BB, Boulouis HJ, Maruyama S, Breitschwerdt EB (2006) Bartonella spp. in pets and effect on human health. Emerg Infect Dis 12(3):389. https://doi.org/10.3201/eid1203.050931

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vayssier-Taussat M, Le Rhun D, Bonnet S, Cotté V (2009) Insights in Bartonella host specificity. Ann N Y Acad Sci 1166:127–132. https://doi.org/10.1111/j.1749-6632.2009.04531.x

    Article  PubMed  Google Scholar 

  25. André MR, Denardi NCB, de Sousa KCM, Gonçalves LR, Henrique PC, Ontivero CRGR et al (2014) Arthropod-borne pathogens circulating in free-roaming domestic cats in a zoo environment in Brazil. Ticks Tick Borne Dis 5(5):545–551. https://doi.org/10.1016/j.ttbdis.2014.03.011

    Article  PubMed  Google Scholar 

  26. Guimarães AMS, Brandão PE, Moraes W, Kiihl S, Santos LC, Filoni C et al (2010) Detection of Bartonella spp. in neotropical felids and evaluation of risk factors and hematological abnormalities associated with infection. Vet Microbiol 142(3–4):346–351. https://doi.org/10.1016/j.vetmic.2009.10.002

    Article  PubMed  Google Scholar 

  27. Pitassi LH, de Paiva Diniz PP, Scorpio DG, Drummond MR, Lania BG et al (2015) Bartonella spp. bacteremia in blood donors from Campinas, Brazil. PLoS Negl Trop Dis 9(1):e0003467. https://doi.org/10.1371/journal.pntd.0003467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sambrook J, Russel DW (2006) Molecular cloning: a laboratory manual3rd edn, Cold Spring Harbor

  29. Johnson G, Ayers M, McClure SCC, Richardson SE, Tellier R (2003) Detection and identification of Bartonella species pathogenic for humans by PCR amplification targeting the riboflavin synthase gene (ribC). J Clin Microbiol 41(3):1069–1072. https://doi.org/10.1128/jcm.41.3.1069-1072.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Norman AF, Regnery R, Jameson P, Greene C, Krause DC (1995) Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene. J Clin Microbiol 33(7):1797–1803

    Article  CAS  Google Scholar 

  31. Kumar S, Stecher G, Tamura K et al (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  32. Lamas CC, Mares-Guia MA, Rozental T, Moreira N, Favacho AR, Barreira J et al (2010) Bartonella spp. infection in HIV positive individuals, their pets and ectoparasites in Rio de Janeiro, Brazil: serological and molecular study. Acta Trop 115(1–2):137–141. https://doi.org/10.1016/j.actatropica.2010.02.015

    Article  PubMed  Google Scholar 

  33. Lantos PM, Maggi RG, Ferguson B, Varkey J, Park LP, Breitschwerdt EB, Woods CW (2014) Detection of Bartonella species in the blood of veterinarians and veterinary technicians: a newly recognized occupational hazard? Vector Borne Zoonotic Dis 14(8):563–570. https://doi.org/10.1089/vbz.2013.1512

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kosoy M, Goodrich I (2019) Comparative ecology of Bartonella and Brucella infections in wild carnivores. Front Vet Sci 5:322. https://doi.org/10.3389/fvets.2018.00322

    Article  PubMed  PubMed Central  Google Scholar 

  35. Molia S, Kasten RW, Stuckey MJ, Boulouis HJ, Allen J, Borgo GM et al (2016) Isolation of Bartonella henselae, Bartonella koehlerae subsp. koehlerae, Bartonella koehlerae subsp. bothieri and a new subspecies of B. koehlerae from free-ranging lions (Panthera leo) from South Africa, cheetahs (Acinonyx jubatus) from Namibia and captive cheetahs from California. Epidemiol Infect 144(15):3237–3243. https://doi.org/10.1017/S0950268816001394

    Article  CAS  PubMed  Google Scholar 

  36. Pretorius AM, Kuyl JM, Isherwood DR, Birtles RJ (2004) Bartonella henselae in African lion, South Africa. Emerg Infect Dis 10(12):2257–2258. https://doi.org/10.3201/eid1012.031054

    Article  PubMed  PubMed Central  Google Scholar 

  37. Molia S, Chomel BB, Kasten RW, Leutenegger CM, Steele BR, Marker L, Martenson JS, Keet DF, Bengis RG, Peterson RP, Munson L, O’Brien SJ (2004) Prevalence of Bartonella infection in wild African lions (Panthera leo) and cheetahs (Acinonyx jubatus). Vet Microbiol 100(1–2):31–41. https://doi.org/10.1016/j.vetmic.2004.01.007

    Article  CAS  PubMed  Google Scholar 

  38. Yamamoto K, Chomel BB, Lowenstine LJ, Kikuchi Y, Phillips LG, Barr BC, Swift PK, Jones KR, Riley SPD, Kasten RW, Foley JE, Pedersen NC (1998) Bartonella henselae antibody prevalence in free-ranging and captive wild felids from California. J Wildl Dis 34(1):56–63. https://doi.org/10.7589/0090-3558-34.1.56

    Article  CAS  PubMed  Google Scholar 

  39. Rotstein DS, Taylor SK, Bradley J, Breitschwerdt EB (2000) Prevalence of Bartonella henselae antibody in Florida panthers. J Wildl Dis 36(1):157–160. https://doi.org/10.7589/0090-3558-36.1.157

    Article  CAS  PubMed  Google Scholar 

  40. Mazim FD, Oliveira TG, Soares JBG (2004) Unusual spot patterns in the population of Geoffroy’s cat from southern Brazil: evidence of hybridization with the little spotted cat. Cat News 40:22–23

    Google Scholar 

  41. Tirelli FP, Mazim FD, Crawshaw PG, Albano AP, Espinosa C, Queirolo D et al (2019) Density and spatio-temporal behaviour of Geoffroy’s cats in a human-dominated landscape of southern Brazil. Mamm Biol 99(1):128–135. https://doi.org/10.1016/j.mambio.2019.11.003

    Article  Google Scholar 

  42. Peters FB, Mazim FD, Favarini MO, Soares JBG, de Oliveira TG (2016) Caça preventiva ou retaliativa de felinos por humanos no extremo sul do Brasil Pp. 311–326. En: Castaño-Uribe, C., C. A. Lasso, R. Hoogesteijn, A. Diaz-Pulido y E. Payán (Editores). II. Conflictos entre felinos y humanos en América Latina. Serie Editorial Fauna Silvestre Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH), Bogotá, D C, Colombia

  43. Espinosa CC, Trigo TC, Tirelli FP, da Silva LG, Eizirik E, Queirolo D, Mazim FD, Peters FB, Favarini MO, de Freitas TRO (2018) Geographic distribution modeling of the Margay (Leopardus wiedii) and jaguarundi (Puma yagouaroundi): a comparative assessment. J Mammal 99(1):252–262. https://doi.org/10.1093/jmammal/gyx152

    Article  Google Scholar 

  44. Staggemeier R, Venker CA, Klein DH, Petry M, Spilki FR, Cantarelli VV (2010) Prevalence of Bartonella henselae and Bartonella clarridgeiae in cats in the south of Brazil: a molecular study. Mem Inst Oswaldo Cruz 105(7):873–878. https://doi.org/10.1590/S0074-02762010000700006

    Article  PubMed  Google Scholar 

  45. Malheiros J, Costa MM, Do Amaral RB, de Sousa KCM, André MR et al (2016) Identification of vector-borne pathogens in dogs and cats from Southern Brazil. Ticks Tick Borne Dis 7(5):893–900. https://doi.org/10.1016/j.ttbdis.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  46. Guptill L, Slater L, Wu CC, Lin TL, Glickman LT, Welch DF, HogenEsch H (1997) Experimental infection of young specific pathogen-free cats with Bartonella henselae. J Infect Dis 176(1):206–216. https://doi.org/10.1086/514026

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Projeto RS Biodiversidade, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and INCT Entomologia Molecular.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugo Araújo Souza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The authors confirm that the ethical policies of the journal, as noted on the journal’s author guidelines page, have been adhered to and the appropriate ethical review committee approval has been received (CEUA-IPVDF). All the Brazilian National Council on Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal, CONCEA) guidelines for the Care and Use of Laboratory Animals were followed. The study protocol was approved by our Committee for Animal Care and Experimentation (CEUA/IPVDF 28/2014 and PUCRS), ComPesq/UFRGS (37536), and the Brazilian Ministry of the Environment (permit SISBIO 47357-3, SISBIO-56373-1 and SISBIO-36803).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, U.A., Webster, A., Dall’Agnol, B. et al. Molecular and Serological Survey of the Cat-Scratch Disease Agent (Bartonella henselae) in Free-Ranging Leopardus geoffroyi and Leopardus wiedii (Carnivora: Felidae) From Pampa Biome, Brazil. Microb Ecol 81, 483–492 (2021). https://doi.org/10.1007/s00248-020-01601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01601-x

Keywords

Navigation