Skip to main content
Log in

Influence of Regional Oceanography and Hydrothermal Activity on Protist Diversity and Community Structure in the Okinawa Trough

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial eukaryotes (protists) contribute substantially to ecological functioning in marine ecosystems, but the relative importance of factors shaping protist diversity, such as environmental selection and dispersal, remains difficult to parse. Water masses of a back-arc basin with hydrothermal activity provide a unique opportunity for studying the effects of dispersal and environmental selection on protist communities. In this study, we used metabarcoding to characterize protist communities in the Okinawa Trough, a back-arc spreading basin containing at least twenty-five active hydrothermal vent fields. Water was sampled from four depths at fourteen stations spanning the length of the Okinawa Trough, including three sites influenced by nearby hydrothermal vent sites. While significant differences in community structure reflecting water depth were present, protist communities were mostly homogeneous horizontally. Protist communities in the bottom waters affected by hydrothermal activity were significantly different from communities in other bottom waters, suggesting that environmental factors can be especially important in shaping community composition under specific conditions. Amplicon sequence variants that were enriched in hydrothermally influenced bottom waters largely derived from cosmopolitan protists that were present, but rare, in other near-bottom samples, thus highlighting the importance of the rare biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Massana R (2011) Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol 65:91–110. https://doi.org/10.1146/annurev-micro-090110-102903

    Article  CAS  PubMed  Google Scholar 

  2. Edgcomb VP (2016) Marine protist associations and environmental impacts across trophic levels in the twilight zone and below. Curr Opin Microbiol 31:169–175. https://doi.org/10.1016/j.mib.2016.04.001

    Article  CAS  PubMed  Google Scholar 

  3. Sauvadet A-L, Gobet A, Guillou L (2010) Comparative analysis between protist communities from the deep-sea pelagic ecosystem and specific deep hydrothermal habitats. Environ Microbiol 12:2946–2964

    Article  CAS  PubMed  Google Scholar 

  4. de Vargas C, Audic S, Henry N et al (2015) Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605

    Article  CAS  PubMed  Google Scholar 

  5. Pernice MC, Giner CR, Logares R et al (2016) Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J 10:945–958. https://doi.org/10.1038/ismej.2015.170

    Article  PubMed  Google Scholar 

  6. Countway PD, Gast RJ, Dennett MR et al (2007) Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ Microbiol 9:1219–1232. https://doi.org/10.1111/j.1462-2920.2007.01243.x

    Article  CAS  PubMed  Google Scholar 

  7. Giner CR, Pernice MC, Balagué V et al (2020) Marked changes in diversity and relative activity of picoeukaryotes with depth in the world ocean. ISME J 14:437–449. https://doi.org/10.1038/s41396-019-0506-9

    Article  PubMed  Google Scholar 

  8. Richter DJ, Watteaux R, Vannier T et al (2019) Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems. bioRxiv:867739

  9. Agogué H, Lamy D, Neal PR et al (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol 20:258–274. https://doi.org/10.1111/j.1365-294X.2010.04932.x

    Article  PubMed  Google Scholar 

  10. Pan Y, Yang J, McManus GB et al (2020) Insights into protist diversity and biogeography in intertidal sediments sampled across a range of spatial scales. Limnol Oceanogr 65:1103–1115. https://doi.org/10.1002/lno.11375

    Article  Google Scholar 

  11. Martiny JBH, Eisen JA, Penn K et al (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854. https://doi.org/10.1073/pnas.1016308108

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kuhn AM, Dutkiewicz S, Jahn O et al (2019) Temporal and spatial scales of correlation in marine phytoplankton communities. J Geophys Res C: Oceans 124:9417–9438. https://doi.org/10.1029/2019JC015331

    Article  Google Scholar 

  13. Barkley RA (1970) The Kuroshio current. Science Journal 6:54–60

    Google Scholar 

  14. Gasparin F, Greiner E, Lellouche J-M et al (2018) A large-scale view of oceanic variability from 2007 to 2015 in the global high resolution monitoring and forecasting system at Mercator Océan. J Mar Syst 187:260–276. https://doi.org/10.1016/j.jmarsys.2018.06.015

    Article  Google Scholar 

  15. Nitani H (1975) Variation of the Kuroshio South of Japan. J Oceanogr Soc Japan. https://doi.org/10.1007/BF02107107

  16. Guo B, Morinaga K (1998) Characteristics of the North Pacific Intermediate Water and its westward extension in the western subtropical region. Proc Japan-China Joint Symp CSSCS:75–83

  17. Chen C-TA (2005) Tracing tropical and intermediate waters from the South China Sea to the Okinawa Trough and beyond. J Geophys Res 110:445. https://doi.org/10.1029/2004JC002494

    Article  Google Scholar 

  18. Nakamura H, Nishina A, Liu Z, Tanaka F (2013) Intermediate and deep water formation in the Okinawa Trough. J Geophys Res Oceans

    Book  Google Scholar 

  19. Beaulieu SE, Szafranski K (2018) InterRidge global database of active submarine hydrothermal vent fields, Version 3.4. https://vents-data.interridge.org Accessed 5 May 2019

  20. Toki T, Itoh M, Iwata D et al (2016) Geochemical characteristics of hydrothermal fluids at Hatoma Knoll in the southern Okinawa Trough. Geochem J 50:493–525. https://doi.org/10.2343/geochemj.2.0449

    Article  CAS  Google Scholar 

  21. Mino S, Makita H, Toki T et al (2013) Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific. Front Microbiol 4:107. https://doi.org/10.3389/fmicb.2013.00107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dick GJ (2019) The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 17:271–283. https://doi.org/10.1038/s41579-019-0160-2

    Article  CAS  PubMed  Google Scholar 

  23. Nagata T, Tamburini C, Arístegui J et al (2010) Emerging concepts on microbial processes in the bathypelagic ocean – ecology, biogeochemistry, and genomics. Deep Sea Research Part II: Topical Studies in Oceanography 57:1519–1536

    Article  CAS  Google Scholar 

  24. Zhang X, Sun Z, Fan D et al (2019) Compositional characteristics and sources of DIC and DOC in seawater of the Okinawa Trough, East China Sea. Cont Shelf Res 174:108–117. https://doi.org/10.1016/j.csr.2018.12.014

    Article  Google Scholar 

  25. Jin B, Wang G, Liu Y, Zhang R (2010) Interaction between the East China Sea Kuroshio and the Ryukyu Current as revealed by the self-organizing map. J Geophys Res 115:937. https://doi.org/10.1029/2010JC006437

    Article  Google Scholar 

  26. Na H, Wimbush M, Park J-H et al (2014) Observations of flow variability through the Kerama Gap between the East China Sea and the Northwestern Pacific. J Geophys Res C: Oceans 119:689–703

    Article  Google Scholar 

  27. Makabe A, Tsutsumi S, Chen C, Torimoto J, Matsui Y, Shibuya T, Miyazaki J, Kitada K, Kawagucci S (2016) Discovery of new hydrothermal vent fields in the mid- and Southern-Okinawa trough. Goldschmidt abstracts, p 1945

    Google Scholar 

  28. Konno U, Tsunogai U, Nakagawa F et al (2006) Liquid CO2 venting on the seafloor: Yonaguni Knoll IV hydrothermal system, Okinawa Trough. Geophys Res Lett 33:725. https://doi.org/10.1029/2006GL026115

    Article  Google Scholar 

  29. Nakajima R, Yamamoto H, Kawagucci S et al (2015) Post-drilling changes in seabed landscape and megabenthos in a deep-sea hydrothermal system, the Iheya North field, Okinawa Trough. PLoS One 10:e0123095. https://doi.org/10.1371/journal.pone.0123095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mitarai S, Watanabe H, Nakajima Y et al (2016) Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc Natl Acad Sci U S A 113:2976–2981. https://doi.org/10.1073/pnas.1518395113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stoeck T, Bass D, Nebel M et al (2010) Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol 19(Suppl 1):21–31. https://doi.org/10.1111/j.1365-294X.2009.04480.x

    Article  CAS  PubMed  Google Scholar 

  32. Mars Brisbin M, Mesrop LY, Grossmann MM, Mitarai S (2018) Intra-host symbiont diversity and extended symbiont maintenance in photosymbiotic acantharea (Clade F). Front Microbiol 9:1998. https://doi.org/10.3389/fmicb.2018.01998

    Article  PubMed  PubMed Central  Google Scholar 

  33. Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. https://doi.org/10.1038/s41587-019-0209-9

  35. Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119

    Article  PubMed  PubMed Central  Google Scholar 

  36. Guillou L, Bachar D, Audic S et al (2013) The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:D597–D604. https://doi.org/10.1093/nar/gks1160

    Article  CAS  PubMed  Google Scholar 

  37. Bokulich NA, Kaehler BD, Rideout JR et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90. https://doi.org/10.1186/s40168-018-0470-z

    Article  PubMed  PubMed Central  Google Scholar 

  38. R Core Team (2018) R: A language and environment for statistical computing

  39. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oksanen J, Guillaume Blanchet F, Friendly M et al (2019) Vegan: Community Ecology Package. R package version 2:5–4

    Google Scholar 

  41. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ (2017) Microbiome datasets are compositional: and this is not optional. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.02224

  43. Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ (2016) It’s all relative: analyzing microbiome data as compositions. Ann Epidemiol 26:322–329. https://doi.org/10.1016/j.annepidem.2016.03.003

    Article  PubMed  Google Scholar 

  44. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  45. Shchepetkin AF (2015) An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Model 91:38–69. https://doi.org/10.1016/j.ocemod.2015.03.006

    Article  Google Scholar 

  46. Mitarai S, Siegel DA, Watson JR et al (2009) Quantifying connectivity in the coastal ocean with application to the Southern California Bight. J Geophys Res 114:C02010. https://doi.org/10.1029/2008JC005166

  47. Xu G, McGillicuddy Jr DJ, Mills SW, Mullineaux LS (2018) Dispersal of hydrothermal vent larvae at east pacific rise 9-10°N segment. J Geophys Res C: Oceans 123:7877–7895. https://doi.org/10.1029/2018JC014290

    Article  Google Scholar 

  48. Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160. https://doi.org/10.1111/j.1574-6941.2007.00375.x

    Article  CAS  PubMed  Google Scholar 

  49. Legendre P, Oksanen J (2011) Testing the significance of canonical axes in redundancy analysis. Methods Ecol Evol

    Book  Google Scholar 

  50. Canals O, Obiol A, Muhovic I et al (2020) Ciliate diversity and distribution across horizontal and vertical scales in the open ocean. Mol Ecol. https://doi.org/10.1111/mec.15528

  51. Wu W, Lu H-P, Sastri A et al (2018) Contrasting the relative importance of species sorting and dispersal limitation in shaping marine bacterial versus protist communities. ISME J 12:485–494. https://doi.org/10.1038/ismej.2017.183

    Article  PubMed  Google Scholar 

  52. Lentendu G, Mahé F, Bass D et al (2018) Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists. Mol Ecol 27:2846–2857. https://doi.org/10.1111/mec.14731

    Article  PubMed  Google Scholar 

  53. Clayton S, Dutkiewicz S, Jahn O, Follows MJ (2013) Dispersal, eddies, and the diversity of marine phytoplankton: Phytoplankton diversity hotspots. Limnol Oceanogr 3:182–197. https://doi.org/10.1215/21573689-2373515

    Article  Google Scholar 

  54. Lin YC, Chung CC, Gong GC, Chiang KP (2014) Diversity and abundance of haptophytes in the East China Sea. Aquat Microb Ecol 72:227–240. https://doi.org/10.3354/ame01697

    Article  Google Scholar 

  55. Rose JM, Caron DA (2007) Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr 52:886–895. https://doi.org/10.4319/lo.2007.52.2.0886

    Article  Google Scholar 

  56. Laws EA, DiTullio GR, Redalje DG (1987) High phytoplankton growth and production rates in the North Pacific subtropical gyre1,2: High phytoplankton rates. Limnol Oceanogr 32:905–918. https://doi.org/10.4319/lo.1987.32.4.0905

    Article  Google Scholar 

  57. Guillou L, Viprey M, Chambouvet A et al (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:3349–3365. https://doi.org/10.1111/j.1462-2920.2008.01731.x

    Article  CAS  PubMed  Google Scholar 

  58. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Clark K, Karsch-Mizrachi I, Lipman DJ et al (2016) GenBank. Nucleic Acids Res 44:D67–D72. https://doi.org/10.1093/nar/gkv1276

    Article  CAS  PubMed  Google Scholar 

  60. Lie AAY, Liu Z, Hu SK et al (2014) Investigating microbial eukaryotic diversity from a global census: insights from a comparison of pyrotag and full-length sequences of 18S rRNA genes. Appl Environ Microbiol 80:4363–4373. https://doi.org/10.1128/AEM.00057-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Edgcomb V, Orsi W, Bunge J et al (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME J 5:1344–1356. https://doi.org/10.1038/ismej.2011.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moreira D, López-García P (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol 19:556–558. https://doi.org/10.1016/j.pt.2003.09.013

    Article  CAS  PubMed  Google Scholar 

  63. Scoble JM, Cavalier-Smith T (2014) Scale evolution in Paraphysomonadida (Chrysophyceae): Sequence phylogeny and revised taxonomy of Paraphysomonas, new genus Clathromonas, and 25 new species. Eur J Protistol 50:551–592. https://doi.org/10.1016/j.ejop.2014.08.001

    Article  PubMed  PubMed Central  Google Scholar 

  64. Atkins MS, Teske AP, Anderson OR (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411. https://doi.org/10.1111/j.1550-7408.2000.tb00067.x

    Article  CAS  PubMed  Google Scholar 

  65. Massana R, del Campo J, Sieracki ME et al (2014) Exploring the uncultured microeukaryote majority in the oceans: reevaluation of ribogroups within stramenopiles. ISME J 8:854–866. https://doi.org/10.1038/ismej.2013.204

    Article  PubMed  Google Scholar 

  66. Massana R, Castresana J, Balagué V et al (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534. https://doi.org/10.1128/AEM.70.6.3528-3534.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Massana R, Terrado R, Forn I et al (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522. https://doi.org/10.1111/j.1462-2920.2006.01042.x

    Article  CAS  PubMed  Google Scholar 

  68. Frias-Lopez J, Thompson A, Waldbauer J, Chisholm SW (2009) Use of stable isotope-labelled cells to identify active grazers of picocyanobacteria in ocean surface waters. Environ Microbiol 11:512–525. https://doi.org/10.1111/j.1462-2920.2008.01793.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Orsi W, Song YC, Hallam S, Edgcomb V (2012) Effect of oxygen minimum zone formation on communities of marine protists. ISME J 6:1586–1601. https://doi.org/10.1038/ismej.2012.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dasilva CR, Li WKW, Lovejoy C (2014) Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res 36:344–363. https://doi.org/10.1093/plankt/fbt123

    Article  CAS  Google Scholar 

  71. Massana R, Guillou L, Díez B, Pedrós-Alió C (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl Environ Microbiol 68:4554–4558. https://doi.org/10.1128/aem.68.9.4554-4558.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Not F, Gausling R, Azam F et al (2007) Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ Microbiol 9:1233–1252. https://doi.org/10.1111/j.1462-2920.2007.01247.x

    Article  CAS  PubMed  Google Scholar 

  73. Shi XL, Marie D, Jardillier L et al (2009) Groups without cultured representatives dominate eukaryotic picophytoplankton in the oligotrophic South East Pacific Ocean. PLoS One 4:e7657. https://doi.org/10.1371/journal.pone.0007657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jungbluth SP, Grote J, Lin H-T et al (2013) Microbial diversity within basement fluids of the sediment-buried Juan de Fuca Ridge flank. ISME J 7:161–172. https://doi.org/10.1038/ismej.2012.73

    Article  CAS  PubMed  Google Scholar 

  75. Clarke LJ, Bestley S, Bissett A, Deagle BE (2019) A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge. ISME J 13:734–737. https://doi.org/10.1038/s41396-018-0306-7

    Article  CAS  PubMed  Google Scholar 

  76. Coyne KJ, Countway PD, Pilditch CA et al (2013) Diversity and distributional patterns of ciliates in Guaymas Basin hydrothermal vent sediments. J Eukaryot Microbiol 60:433–447. https://doi.org/10.1111/jeu.12051

    Article  CAS  PubMed  Google Scholar 

  77. Pasulka A, Hu SK, Countway PD et al (2019) SSU-rRNA gene sequencing survey of benthic microbial eukaryotes from guaymas basin hydrothermal vent. J Eukaryot Microbiol 66:637–653. https://doi.org/10.1111/jeu.12711

    Article  CAS  PubMed  Google Scholar 

  78. López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554. https://doi.org/10.1111/j.1462-2920.2006.01158.x

    Article  CAS  PubMed  Google Scholar 

  79. Santoferrara LF, Alder VV, McManus GB (2017) Phylogeny, classification and diversity of Choreotrichia and Oligotrichia (Ciliophora, Spirotrichea). Mol Phylogenet Evol 112:12–22. https://doi.org/10.1016/j.ympev.2017.03.010

    Article  PubMed  Google Scholar 

  80. Terrado R, Scarcella K, Thaler M et al (2013) Small phytoplankton in Arctic seas: vulnerability to climate change. Biodiversity 14:2–18. https://doi.org/10.1080/14888386.2012.704839

    Article  Google Scholar 

  81. Boscaro V, Santoferrara LF, Zhang Q et al (2018) EukRef-Ciliophora: a manually curated, phylogeny-based database of small subunit rRNA gene sequences of ciliates. Environ Microbiol 20:2218–2230. https://doi.org/10.1111/1462-2920.14264

    Article  CAS  PubMed  Google Scholar 

  82. Zhao F, Xu K (2016) Molecular diversity and distribution pattern of ciliates in sediments from deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. Deep Sea Res Part I 116:22–32. https://doi.org/10.1016/j.dsr.2016.07.007

    Article  CAS  Google Scholar 

  83. Christaki U, Dolan JR, Pelegri S, Rassoulzadegan F (1998) Consumption of picoplankton-size particles by marine ciliates: Effects of physiological state of the ciliate and particle quality. Limnol Oceanogr 43:458–464. https://doi.org/10.4319/lo.1998.43.3.0458

    Article  Google Scholar 

  84. Fan X, Hu X, Al-Farraj SA et al (2011) Morphological description of three marine ciliates (Ciliophora, Scuticociliatia), with establishment of a new genus and two new species. Eur J Protistol 47:186–196. https://doi.org/10.1016/j.ejop.2011.04.001

    Article  PubMed  Google Scholar 

  85. Lynn DH, Strüder-Kypke M (2005) Scuticociliate endosymbionts of echinoids (phylum Echinodermata): phylogenetic relationships among species in the genera Entodiscus, Plagiopyliella, Thyrophylax, and Entorhipidium (phylum Ciliophora). J Parasitol 91:1190–1199. https://doi.org/10.1645/GE-445R.1

    Article  PubMed  Google Scholar 

  86. Umehara A, Kosuga Y, Hirose H (2003) Scuticociliata infection in the weedy sea dragon Phyllopteryx taeniolatus. Parasitol Int 52:165–168. https://doi.org/10.1016/s1383-5769(02)00080-6

    Article  PubMed  Google Scholar 

  87. Bourne DG, Boyett HV, Henderson ME et al (2008) Identification of a ciliate (Oligohymenophorea: Scuticociliatia) associated with brown band disease on corals of the Great Barrier Reef. Appl Environ Microbiol 74:883–888. https://doi.org/10.1128/AEM.01124-07

    Article  CAS  PubMed  Google Scholar 

  88. Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci U S A 95:9962–9966. https://doi.org/10.1073/pnas.95.17.9962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Seenivasan R, Sausen N, Medlin LK, Melkonian M (2013) Picomonas judraskeda gen. et sp. nov.: the first identified member of the Picozoa phylum nov., a widespread group of picoeukaryotes, formerly known as “picobiliphytes”. PLoS One 8:e59565. https://doi.org/10.1371/journal.pone.0059565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moreira D, López-García P (2014) The rise and fall of Picobiliphytes: how assumed autotrophs turned out to be heterotrophs. Bioessays 36:468–474. https://doi.org/10.1002/bies.201300176

    Article  PubMed  PubMed Central  Google Scholar 

  91. Terrado R, Medrinal E, Dasilva C et al (2011) Protist community composition during spring in an Arctic flaw lead polynya. Polar Biol 34:1901–1914. https://doi.org/10.1007/s00300-011-1039-5

    Article  Google Scholar 

  92. Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941. https://doi.org/10.1128/AEM.67.7.2932-2941.2001

    Article  PubMed  PubMed Central  Google Scholar 

  93. Obiol A, Giner CR, Sánchez P et al (2020) A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour 20. https://doi.org/10.1111/1755-0998.13147

Download references

Acknowledgments

We thank the captain and crew of the JAMSTEC R/V Mirai for their assistance and support in sample collection. Hiroyuki Yamamoto, Hiromi Watanabe, Dhugal Lindsay, Mary M. Grossmann, and Yuko Hasagawa were instrumental in organizing and facilitating cruise sampling and Otis Brunner substantially contributed to seawater filtration. We are further grateful to Hiromi Watanabe for helping in accessing and interpreting the environmental data and for comments on the manuscript. We thank the Okinawa Institute of Science and Technology (OIST) DNA sequencing section (Onna, Okinawa) for carrying out the sequencing. We thank the OIST Scientific Computing Data Analysis Section for the use of the Sango HPC on which oceanographic distance computations were performed.

Code Availability

The data and code necessary to reproduce the statistical analyses for this study are available on GitHub: https://github.com/maggimars/OkinawaTroughProtists.

Funding

This work was funded by the Marine Biophysics Unit of the Okinawa Institute of Science and Technology Graduate University. MMB was supported by a Japan Society for the Promotion of Science DC1 graduate student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Mars Brisbin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Electronic Supplementary Material

ESM 1

(PDF 1954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mars Brisbin, M., Conover, A.E. & Mitarai, S. Influence of Regional Oceanography and Hydrothermal Activity on Protist Diversity and Community Structure in the Okinawa Trough. Microb Ecol 80, 746–761 (2020). https://doi.org/10.1007/s00248-020-01583-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01583-w

Keywords

Navigation