Skip to main content

Advertisement

Log in

Microbial Assemblage Dynamics Within the American Alligator Nesting Ecosystem: a Comparative Approach Across Ecological Scales

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Understanding the ecological processes that shape species assemblage patterns is central to community ecology. The effects of ecological processes on assemblage patterns are scale-dependent. We used metabarcoding and shotgun sequencing to determine bacterial taxonomic and functional assemblage patterns among varying defined focal scales (micro-, meso-, and macroscale) within the American alligator (Alligator mississippiensis) nesting microbiome. We correlate bacterial assemblage patterns among eight nesting compartments within and proximal to alligator nests (micro-), across 18 nests (meso-), and between 4 geographic sampling sites (macro-), to determine which ecological processes may drive bacterial assemblage patterns within the nesting environment. Among all focal scales, bacterial taxonomic and functional richness (α-diversity) did not statistically differ. In contrast, bacterial assemblage structure (β-diversity) was unique across all focal scales, whereas functional pathways were redundant within nests and across geographic sites. Considering these observed scale-based patterns, taxonomic bacterial composition may be governed by unique environmental filters and dispersal limitations relative to microbial functional attributes within the alligator nesting environment. These results advance pattern-process dynamics within the field of microbial community ecology and describe processes influencing the American alligator nest microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206. https://doi.org/10.1086/652373

    Article  PubMed  Google Scholar 

  2. Sydenham MAK et al (2017) Disentangling the contributions of dispersal limitation, ecological drift, and ecological filtering to wild bee community assembly. Ecos 8:e01650. https://doi.org/10.1002/ecs2.1650

    Article  Google Scholar 

  3. MacArthur RH (1969) Patterns of communities in the tropics. Biol J Linn Soc 1:19–30. https://doi.org/10.1111/j.1095-8312.1969.tb01809.x

    Article  Google Scholar 

  4. Ron R, Fragman-Sapir O, Kadmon R (2018) Dispersal increases ecological selection by increasing effective community size. Proc Natl Acad Sci U S A 115:11280–11285. https://doi.org/10.1073/pnas.1812511115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev Camb Philos Soc 80:205–225. https://doi.org/10.1017/s1464793104006645

    Article  PubMed  Google Scholar 

  6. Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Natl Acad Sci U S A 106:9955–9962. https://doi.org/10.1073/pnas.0901264106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gilbert B, Levine JM (2017) Ecological drift and the distribution of species diversity. Proc Biol Sci 284:20170507. https://doi.org/10.1098/rspb.2017.0507

    Article  PubMed  PubMed Central  Google Scholar 

  8. Renault D, Laparie M, McCauley SJ, Bonte D (2018) Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu Rev Entomol 63:345–368. https://doi.org/10.1146/annurev-ento-020117-043315

    Article  CAS  PubMed  Google Scholar 

  9. Kraft NJB et al (2015) Community assembly, coexistence and the environmental filtering metaphor. Funct Ecol 29:592–599. https://doi.org/10.1111/1365-2435.12345

    Article  Google Scholar 

  10. Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397. https://doi.org/10.2307/2389612

    Article  Google Scholar 

  11. Levin SA (1995) The problem of pattern and scale in ecology. Ecology. 73:277–326. https://doi.org/10.2307/1941447

    Article  Google Scholar 

  12. Belmaker J, Jetz W (2013) Spatial scaling of functional structure in bird and mammal assemblages. Am Nat 181:464–478. https://doi.org/10.1086/669906

    Article  PubMed  Google Scholar 

  13. Terlizzi A, Anderson MJ, Fraschetti S, Benedetti-Cecchi L (2007) Scales of spatial variation in Mediterranean subtidal sessile assemblages at different depths. Mar Ecol Prog Ser 332:25–39. https://doi.org/10.3354/meps332025

    Article  Google Scholar 

  14. Boon E et al (2013) Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 38:90–118. https://doi.org/10.1111/1574-6976.12035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nemergut DR et al (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. https://doi.org/10.1128/MMBR.00051-12

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morrison-Whittle P, Goddard MR (2015) Quantifying the relative roles of selective and neutral processes in defining eukaryotic microbial communities. ISME J 9:2003–2011. https://doi.org/10.1038/ismej.2015.18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baxter AM, Johnson L, Edgerton J, Royer T, Leff LG (2012) Structure and function of denitrifying bacterial assemblages in low-order Indian streams. Fresh Sci 31:304–317. https://doi.org/10.1899/11-066.1

    Article  Google Scholar 

  18. Branco S, Bruns TD, Singleton I (2013) Fungi at a small scale: spatial zonation of fungal assemblages around single trees. PLoS ONE 8:e78295. https://doi.org/10.1371/journal.pone.0078295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Canfora L et al (2014) Salinity and bacterial diversity: to what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE 9:e106662. https://doi.org/10.1371/journal.pone.0106662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gourmelon V et al (2016) Environmental and geographical factors structure soil microbial diversity in new caledonian ultramafic substrates: a metagenomic approach. PLoS ONE 11:e0167405. https://doi.org/10.1371/journal.pone.0167405,

    Article  PubMed  PubMed Central  Google Scholar 

  21. Caporaso JG et al (2011) Moving pictures of the human microbiome. Genome Biol 12:R50. https://doi.org/10.1186/gb-2011-12-5-r50

    Article  PubMed  PubMed Central  Google Scholar 

  22. Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 25:3776–3800. https://doi.org/10.1111/mec.13730

    Article  PubMed  Google Scholar 

  23. Gilbert JA et al (2018) Current understanding of the human microbiome. Nat Med 24:394–400. https://doi.org/10.1038/nm.4517

    Article  CAS  Google Scholar 

  24. Turnbaugh PJ et al (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature. 449:804–810. https://doi.org/10.1038/nature06244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T (2011) Bacterial community assembly based on functional genes rather than species. Proc Natl Acad Sci U S A 108:14288–14293. https://doi.org/10.1073/pnas.1101591108

    Article  PubMed  PubMed Central  Google Scholar 

  26. Louca S et al (2016) High taxonomic variability despite stable functional structure across microbial communities. Nat Ecol Evol 1:0015. https://doi.org/10.1038/s41559-016-0015

    Article  Google Scholar 

  27. Louca S et al (2018) Function and functional redundancy in microbial systems. Nat Ecol Evol 2:936–943. https://doi.org/10.1038/s41559-018-0519-1

    Article  PubMed  Google Scholar 

  28. Bletz MC et al (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat specific predicted functions. Nat Commun 7:13699. https://doi.org/10.1038/ncomms13699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jauker FT, Diekötter T, Schwarzbach F, Wolters V (2009) Pollinator dispersal in an agricultural matrix: opposing responses to landscape structure and distance from main habitat. Landsc Ecol 24:547–555. https://doi.org/10.1007/s10980-009-9331-2

    Article  Google Scholar 

  30. Peay KG, Garbelotto M, Bruns TD (2010) Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology. 91:3631–3640. https://doi.org/10.1890/09-2237.1

    Article  PubMed  Google Scholar 

  31. Welsh RM et al (2016) Bacterial predation in a marine host-associated microbiome. ISME J 10:1540–1544. https://doi.org/10.1038/ismej.2015.219

    Article  CAS  PubMed  Google Scholar 

  32. Harris RN, James TY, Lauer A, Alice Simon A, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth. 3:53–56. https://doi.org/10.1007/s10393-005-0009-1

    Article  Google Scholar 

  33. Sharon G, Segal D, Zilber-Rosenberg I, Rosenberg E (2011) Symbiotic bacteria are responsible for diet-induced mating preference in Drosophila melanogaster, providing support for the hologenome concept of evolution. Gut Microbes 2:190–192. https://doi.org/10.4161/gmic.2.3.16103

    Article  PubMed  Google Scholar 

  34. Jacob S et al (2015) Microbiome affects egg carotenoid investment, nestling development and adult oxidative costs of reproduction in great tits. Funct Ecol 29:1048–1058. https://doi.org/10.1111/1365-2435.12404

    Article  Google Scholar 

  35. Kearns PJ et al (2017) Fight fungi with fungi: antifungal properties of the amphibian mycobiome. Front Microbiol 8:2494. https://doi.org/10.3389/fmicb.2017.02494

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wiley NC et al (2017) The microbiota-gut-brain axis as a key regulator of neural function and the stress response: implications for human and animal health. J Anim Sci 95:3225–3246. https://doi.org/10.2527/jas.2016.1256

    Article  CAS  PubMed  Google Scholar 

  37. Kwak MJ et al (2018) Rhizosphere microbiome structure alters to enable wilt resistance in tomato. Nat Biotechnol 36:1100–1109. https://doi.org/10.1038/nbt.4232

    Article  CAS  Google Scholar 

  38. Flechas SV et al (2019) Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J 13:361–373. https://doi.org/10.1038/s41396-018-0284-9

    Article  CAS  PubMed  Google Scholar 

  39. Walker DM, Leys JE, Grisnik M, Grajal-Puche A, Murray CM, Allender MC (2019) Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J 13:2209–2222. https://doi.org/10.1038/s41396-019-0416-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ferguson MWJ (1981) Extrinsic microbial degradation of the alligator eggshell. Science. 214:1135–1137. https://doi.org/10.1126/science.214.4525.1135

    Article  CAS  PubMed  Google Scholar 

  41. Ferguson MWJ (1982) The structure and composition of the eggshell and embryonic membranes of Alligator mississippiensis. Trans Zool Soc Lond 36:99–152. https://doi.org/10.1111/j.1096-3642.1982.tb00064.x

    Article  Google Scholar 

  42. Joanen T, McNease L (1989) Ecology and physiology of nesting and early development of the American alligator. Integr Comp Biol 29:987–998. https://doi.org/10.1093/icb/29.3.987

    Article  Google Scholar 

  43. Palmer ML, Mazzotti FJ (2004) Structure of everglades alligator holes. Wetlands. 24:115–122. https://doi.org/10.1672/0277-5212(2004)024[0115:SOEAH]2.0.CO;2

    Article  Google Scholar 

  44. Merchant M, Murray CM, Cooper A (2014) American alligator nests as microhabitats for a diversity of vertebrates. Herp Rev 45:201–203

    Google Scholar 

  45. Grajal A (2019) Nesting alligator. Seattle, Washington

    Google Scholar 

  46. Grajal-Puche A, Kearley M, Bravo CA, Murray CM (2018) Alligator mississippiensis (American alligator). unique nesting ecology. Herp Rev 49:734–736

    Google Scholar 

  47. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schloss PD et al (2009) Introducing mothur: Open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Quast C et al (2013) The SILVA ribosomal rna gene database project: improved data processing and web-based tools. Nucl Acid Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219/

    Article  CAS  Google Scholar 

  50. Rognes T, Flouro T, Nichols B, Quince C, Mahe F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4:e2584. https://doi.org/10.7717/peerj.2584

    Article  PubMed  PubMed Central  Google Scholar 

  51. Comeau AM, Douglas GM, Langille GIM (2017) Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems 2:e00127–e00116. https://doi.org/10.1128/mSystems.00127-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Segata N et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814. https://doi.org/10.1038/nmeth.2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Franzosa EA et al (2018) Species-level functional profiling of metagenomes and metatranscriptomes. Nat Methods 15:962–968. https://doi.org/10.1038/s41592-018-0176-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Available from: https://www.R-project.org/

    Google Scholar 

  55. Oksanen J et al (2019) vegan: Community ecology package. R package version 2.5-4, Available from https://CRAN.R-project.org/package=vegan

  56. De Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology. 90:3566–3574. https://doi.org/10.1890/08-1823.1

    Article  PubMed  Google Scholar 

  57. Simpson EH (1949) Measurement of diversity. Nature. 163:688. https://doi.org/10.1038/163688a0

    Article  Google Scholar 

  58. Chen KT, Tan J, Way, G. P.. DOIng, G., Deborah, H. A. & Greene, C. S. (2018) PatheCORE-T: identifying and visualizing globally co-occuring pathways in large transcriptomic compendia. BioData Mining 11. https://doi.org/10.1186/s13040-018-0175-7

  59. Ngai JT, Srivastava DS (2006) Predators accelerate nutrient cycling in a bromeliad ecosystem. Science 314. https://doi.org/10.1126/science.1132598

  60. Murray CM, Easter M, Merchant M, Cooper A, Crother BI (2013) Can reproductive allometry assess population marginality in crocodilians? a comparative analysis of gulf coast American alligator (Alligator mississippiensis) populations. Copeia. 2:268–276. https://doi.org/10.1643/CH-11-136

    Article  Google Scholar 

  61. Finlay BJ, Clarke KJ (1999) Ubiquitous dispersal of microbial species. Nature. 400:828. https://doi.org/10.1038/23616

    Article  CAS  Google Scholar 

  62. Darcy JL, Lynch RC, King AJ, Robeson MS, Schmidt SK (2011) Global distribution of polaromonas phylotypes–evidence for a highly successful dispersal capacity. PLoS ONE 6:e23742. https://doi.org/10.1371/journal.pone.0023742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wilkinson DM, Koumoutsaris S, Mitchell EAD, Bey I (2012) Modelling the effect of size on the aerial dispersal of microorganisms. J Biogeogr 39:89–97. https://doi.org/10.1111/j.1365-2699.2011.02569.x

    Article  Google Scholar 

  64. Svoboda P, Lindström ES, Ahmed Osman O, Langenheder S (2018) Dispersal timing determines the importance of priority effects in bacterial communities. ISME J 12:644–646. https://doi.org/10.1038/ismej.2017.180

    Article  PubMed  Google Scholar 

  65. Fukami T et al (2010) Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol Lett 13:675–684. https://doi.org/10.1111/j.1461-0248.2010.01465.x

    Article  PubMed  Google Scholar 

  66. Murray CM, Easter M, Padilla S, Marin MS, Guyer C (2016) Regional warming and the thermal regimes of American crocodile nests in the Tempisque basin, Costa Rica. J Therm Biol 60:49–59. https://doi.org/10.1016/j.jtherbio.2016.06.004

    Article  PubMed  Google Scholar 

  67. Peralta AL, Ludmer S, Kent AD (2013) Hydrologic history influences microbial community composition and nitrogen cycling under experimental drying/wetting treatments. Soil Biol Biochem 66:29–37. https://doi.org/10.1016/j.soilbio.2013.06.019

    Article  CAS  Google Scholar 

  68. Hu A et al (2019) Diurnal temperature variation and plants drive latitudinal patterns in seasonal dynamics of soil microbial community. Front Microbiol 10:00674. https://doi.org/10.3389/fmicb.2019.00674

    Article  Google Scholar 

  69. Lear G, Bellamy J, Case BS, Lee JE, Buckley HL (2014) Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. ISME J 8:1715–1726. https://doi.org/10.1038/ismej.2014.21

    Article  PubMed  PubMed Central  Google Scholar 

  70. Oberbeckmann S, Kreikemeyer B, Labrenz M (2018) Environmental factors support the formation of specific bacterial assemblages on microplastics. Front Microbiol 8:2709. https://doi.org/10.3389/fmicb.2017.02709

    Article  PubMed  PubMed Central  Google Scholar 

  71. Telford RJ, Vandvik V, Birks HJB (2006) Dispersal limitations matter for microbial morphospecies. Science. 312:1015. https://doi.org/10.1126/science.1125669

    Article  CAS  PubMed  Google Scholar 

  72. Ma H, Su H (2019) Effect of temperature on the fermentation of starch by two high efficient H2 producers. Renew Energy 138:964–970. https://doi.org/10.1016/j.renene.2019.01.126

    Article  CAS  Google Scholar 

  73. Schweitzer B, Huber I, Amann R, Ludwig W, Simon M (2001) Alpha- and beta-Proteobacteria control the consumption and release of amino acids on lake snow aggregates. Appl Environ Microbiol 67:632–645. https://doi.org/10.1128/AEM.67.2.632-645.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang J, Liu Z, Xia J, Chen Y (2019) Effect of microbial inoculation on physicochemical properties and bacterial community structure of citrus peel composting. Bioresour Technol 291:121843. https://doi.org/10.1016/j.biortech.2019.121843

    Article  CAS  PubMed  Google Scholar 

  75. Zhou Y-M, Chen Y-P, Guo J-S, Shen Y, Yang J-X (2019) The correlations and spatial characteristics of microbiome and silage quality by reusing of citrus waste in a family-scale bunker silo. J Clean Prod 226:407–418. https://doi.org/10.1016/j.jclepro.2019.04.075

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank C. and D. Kearley for logistical support and A. Grajal for artwork design.

Availability of Data and Materials

All raw sequence data can be found under GenBank SRA accession number(s) PRJNA554418 (amplicon analysis) and PRJNA554694 (metagenomic analysis). Statistical analysis was performed in R version 3.5.1; the corresponding R markdown code file is included in the supplemental material.

Author information

Authors and Affiliations

Authors

Contributions

AGP, DMW, and CMM conceived the study. All authors contributed to collection of specimens during field work. AGP and DMW completed the high-throughput sequencing, ran the bioinformatics, and statistical analyses. AGP, DMW, and CMM wrote the manuscript and all authors contributed equally to revisions.

Corresponding author

Correspondence to Donald M. Walker.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Ethics Approval

Tennessee Technological University research policies and guidelines for the ethical treatment of animals were followed during this study (TTU-IACUC—17-18—007). Research collection permits were obtained from the appropriate governmental organizations (Eufaula National Wildlife Refuge Permit #: 4356020181R1; Alabama Conservation License Permit #: 201807822268680; J.D. Murphree Wildlife Management Area Collection Permit #: TPWD ESCA No. 826). Samples from Cameron Parish, LA were collected from private land under owner consent.

Electronic Supplementary Materials

Supplementary Table I

Taxonomic classification to the rank of order for bacteria indicative of the eggshell microbiome and other within nest assemblages. Indicator value > 0.50, α < 0.01. Highlighted rows are enriched (>3000 reads) bacterial taxa found only on the eggshell surface. (PDF 51 kb)

Supplementary Table II

Functional pathways indicative (indicator value > 0.50, α < 0.01) of the nest chamber (sample E) which is in direct contact with eggshell surfaces. Bolded pathways bordered by “ ** ” designate substrate degredation pathways. (PDF 86 kb)

Supplementary Table III

GPS coordinates of nests sampled in 2018. (PDF 30 kb)

ESM 1

(CSV 120 kb)

ESM 2

(CSV 2063 kb)

ESM 3

(CSV 2063 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grajal-Puche, A., Murray, C.M., Kearley, M. et al. Microbial Assemblage Dynamics Within the American Alligator Nesting Ecosystem: a Comparative Approach Across Ecological Scales. Microb Ecol 80, 603–613 (2020). https://doi.org/10.1007/s00248-020-01522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01522-9

Keywords

Navigation