Skip to main content
Log in

Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A multicellular host and its microbial communities are recognized as a metaorganism—a composite unit of evolution. Microbial communities have a variety of positive and negative effects on the host life history, ecology, and evolution. This study used high-throughput amplicon sequencing to characterize the complete skin and gut microbial communities, including both bacteria and fungi, of a terrestrial salamander, Plethodon glutinosus (Family Plethodontidae). We assessed salamander populations, representing nine mitochondrial haplotypes (‘clades’), for differences in microbial assemblages across 13 geographic locations in the Southeastern United States. We hypothesized that microbial assemblages were structured by both host factors and geographic distance. We found a strong correlation between all microbial assemblages at close geographic distances, whereas, as spatial distance increases, the patterns became increasingly discriminate. Network analyses revealed that gut-bacterial communities have the highest degree of connectedness across geographic space. Host salamander clade was explanatory of skin-bacterial and gut-fungal assemblages but not gut-bacterial assemblages, unless the latter were analyzed within a phylogenetic context. We also inferred the function of gut-fungal assemblages to understand how an understudied component of the gut microbiome may influence salamander life history. We concluded that dispersal limitation may in part describe patterns in microbial assemblages across space and also that the salamander host may select for skin and gut communities that are maintained over time in closely related salamander populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Accessibility

All raw sequence data has been submitted to GenBank SRA under the accession number PRJNA590016.

References

  1. Amato KR, Amato KR, Sanders JG, Song SJ, Nute M, Metcalf JL, Thompson LR, Morton JT, Amir A, McKenzie VJ, Humphrey G, Gogul G, Gaffney J, Baden AL, Britton GAO, Cuozzo FP, Di Fiore A, Dominy NJ, Goldberg TL, Gomez A, Kowalewski MM, Lewis RJ, Link A, Sauther ML, Tecot S, White BA, Nelson KE, Stumpf RM, Knight R, Leigh SR (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587

    Article  CAS  PubMed  Google Scholar 

  2. Larsen A, Tao Z, Bullard S, Arias C (2013) Diversity of the skin microbiota of fishes: evidence for host species specificity. FEMS Microbiol Ecol 85:483–494

    Article  CAS  PubMed  Google Scholar 

  3. Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight R, Kilham SS, Russell JA (2012) Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol 21:3363–3378

    Article  PubMed  Google Scholar 

  4. Rebollar EA, Simonetti SJ, Shoemaker WR, Harris RN (2016) Direct and indirect horizontal transmission of the antifungal probiotic bacterium Janthinobacterium lividum on green frog (Lithobates clamitans) tadpoles. Appl Environ Microbiol 82:2457–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scheuring I, Yu DW (2012) How to assemble a beneficial microbiome in three easy steps. Ecol Lett 15:1300–1307

    Article  PubMed  PubMed Central  Google Scholar 

  6. Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, Minbiole KPC, House LL, Jensen RV, Becker MH, Walke JB, Medina D, Ibáñez R, Harris RN (2015) Panamanian frog species host unique skin bacterial communities. Front Microbiol 6:1171

    Article  PubMed  PubMed Central  Google Scholar 

  7. McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596

    Article  CAS  PubMed  Google Scholar 

  8. Walke JB, Becker MH, Loftus SC, House LL, Cormier G, Vensen RV, Belden LK (2014) Amphibian skin may select for rare environmental microbes. ISME J 8:2207–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kueneman JG, Parfrey LW, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250

    Article  PubMed  Google Scholar 

  10. Prado-Irwin SR, Bird AK, Zink AG, Vredenburd VT (2017) Intraspecific variation in the skin-associated microbiome of a terrestrial salamander. Microb Ecol 74:745–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Muletz-Wolz CR, DiRenzo GV, Yarwood SA, Grant EH, Fleischer RC, Lips KR (2017) Antifungal bacteria on woodland salamander skin exhibit high taxonomic diversity and geographic variability. Appl Environ Microbiol 83:e00186–e00217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hughey MC, Pena JA, Reyes R, Medina D, Belden LK, Burrowes PA (2017) Skin bacterial microbiome of a generalist Puerto Rican frog varies along elevation and land use gradients. PeerJ 5:e3688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Muletz-Wolz CR, Fleischer RC, Lips KR (2019) Fungal disease and temperature alter skin microbiome structure in an experimental salamander system. Mol Ecol

  14. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ellison S, Knapp RA, Sparagon W, Swei A, Vredenburg VT (2019) Reduced skin bacterial diversity correlates with increased pathogen infection intensity in an endangered amphibian host. Mol Ecol 28:127–140

    Article  PubMed  Google Scholar 

  16. Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Divers Distrib 9:141–150

    Article  Google Scholar 

  17. Martel A, Sluijs AS-VD, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duda TF, Vanhoye D, Nicolas P (2002) Roles of diversifying selection and coordinated evolution in the evolution of amphibian antimicrobial peptides. Mol Biol Evol 19:858–864

    Article  CAS  PubMed  Google Scholar 

  19. Harris RN, James TY, Lauer A, Simon MA, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56

    Article  Google Scholar 

  20. Park ST, Collingwood AM, St-Hilaire S, Sheridan PP (2014) Inhibition of Batrachochytrium dendrobatidis caused by bacteria isolated from the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, from grand Teton National Park, Wyoming, USA. Microbiol Insights 7:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the south African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599

    Article  CAS  PubMed  Google Scholar 

  23. Woodhams DC, Voyles J, Lips KR, Carey C, Rollins-Smith LA (2006) Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. J Wildl Dis 42:207–218

    Article  CAS  PubMed  Google Scholar 

  24. Flechas SV, Acosta-González A, Escobar LA, Kueneman JG, Sánchez-Quitian ZA, Parra-Giraldo CM, Rollins-Smith LA, Reinert LK, Vredenburg VT, Amézquita A, Woodhams DC (2019) Microbiota and skin defense peptides may facilitate coexistence of two sympatric Andean frog species with a lethal pathogen. ISME J 13:361–373

    Article  CAS  PubMed  Google Scholar 

  25. Antwis RE, Haworth RL, Engelmoer DJP, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS One 9:e85563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Kohl KD, Cary TL, Karasov WH, Dearing MD (2013) Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep 5:899–903

    Article  PubMed  Google Scholar 

  27. Kozak KH, Wiens JJ (2006) Does niche conservatism promote speciation? A case study in north American salamanders. Evolution 60:2604–2621

    Article  PubMed  Google Scholar 

  28. Highton R, Peabody RB (2000) Geographic protein variation and speciation in salamanders of the Plethodon jordani and Plethodon glutinosus complexes in the southern Appalachian mountains with the description of four new species. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of Plethodontid salamanders. Kulwer Academic/Plenum, New York, pp 31–94

    Chapter  Google Scholar 

  29. Weisrock DW, Kozak KH, Larson A (2005) Phylogeographic analysis of mitochondrial gene flow and introgression in the salamander Plethodon shermani. Mol Ecol 14:1457–1472

    Article  CAS  PubMed  Google Scholar 

  30. Highton R (1995) Speciation in eastern north American salamanders of the genus Plethodon. Annu Rev Ecol Syst 26:579–600

    Article  Google Scholar 

  31. Walker DM, Lawrence BR, Esterline D, McAndrew M, Edelbrock J, Graham SP, Kelehear C (2015) A novel protocol for washing environmental microbes from amphibian skin. Herpetol Rev 46:349–353

    Google Scholar 

  32. Gefrides LA, Powell MC, Donley MA, Kahn R (2010) UV irradiation and autoclave treatment for elimination of contaminating DNA from laboratory consumables. Forensic Sci Int Genet 4:89–94

    Article  CAS  PubMed  Google Scholar 

  33. Fukatsu T (1999) Acetone preservation: a practical technique for molecular analysis. Mol Ecol 8:1935–1945

    Article  CAS  PubMed  Google Scholar 

  34. Moritz C, Schneider CJ, Wake DB (1992) Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Syst Biol 41:273–291

    Article  Google Scholar 

  35. Fisher-Reid MC, Wiens JJ (2011) What are the consequences of combining nuclear and mitochondrial data for phylogenetic analysis? Lessons from Plethodon salamanders and 13 other vertebrate clades. BMC Evol Biol 11:300

    Article  PubMed  PubMed Central  Google Scholar 

  36. Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601

    Article  CAS  PubMed  Google Scholar 

  37. Bazinet AL, Zwickl DJ, Cummings MP (2014) A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Syst Biol 63:812–818

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion, vol. PhD. The University of Texas at Austin, City. http://hdl.handle.net/2152/2666

  39. Wiens JJ, Engstrom TN, Chippindale PT (2006) Rapid diversification, incomplete isolation, and the "speciation clock" in north American salamanders (genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evolution 60:2585–2603

    CAS  PubMed  Google Scholar 

  40. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schmidt PA, Bálint M, Greshake B, Bandow C, Römbke J, Schmitt I (2013) Illumina metabarcoding of a soil fungal community. Soil Biol Biochem 65:128–132

    Article  CAS  Google Scholar 

  42. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    PubMed  Google Scholar 

  44. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and "all-species living tree project (LTP)" taxonomic frameworks. Nucleic Acids Res 42:D643–D648

    Article  CAS  PubMed  Google Scholar 

  45. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    Article  PubMed  Google Scholar 

  47. Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carlsen T, Aas AB, Lindner D, Vrålstad T, Schumacher T, Kauserud H (2012) Don't make a mista(g)ke: is tag switching an overlooked source of error in amplicon pyrosequencing studies? Fungal Ecol 5:747–749

    Article  Google Scholar 

  49. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers - a user's guide. New Phytol 199:288–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kowallik V, Miller E, Greig D (2015) The interaction of Saccharomyces paradoxus with its natural competitors on oak bark. Mol Ecol 24:1596–1610

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  52. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  53. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  54. R Core Team (2015) R: A language and environment for statistical computing, vol. R Foundation for Statistical Computing, City. http://www.R-project.org/

  55. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phlogenetics and evolution in R language. Bioinformatics 20(2):289–290

    Article  CAS  PubMed  Google Scholar 

  56. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

    Article  Google Scholar 

  57. Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24

    Article  Google Scholar 

  58. Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20

    Article  Google Scholar 

  59. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core team (2017) nlme: linear and nonlinear mixed effects models, vol. R package version 3.1-131, City

  60. Loftus SC, House LL, Hughey MC, Walke JB, Becker MH, Belden LK (2015) Dimension reduction for multinomial models via a Kolmogorov-Smirnov measure (KSM), vol. Virginia Tech, City. http://hdl.handle.net/10919/89423

  61. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  62. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2015) Vegan: community ecology package. R package version 1.17-4. http://cran.r-project.org>. Accessed Mar 17;23:2010

  63. Kahle D, Wickham H (2013) Ggmap: spatial visualization with ggplot2. R J 5:144–161

    Article  Google Scholar 

  64. Charlop-Powers Z, Brady SF (2015) Phylogeo: and R package for geographic analysis and vizualization of microbiome data. Bioinformatics 31:2909–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducable interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Auguie B (2017) gridExtra: miscellaneous functions for "grid" graphics. R package version 2.3

  67. Hervé M (2018) Testing and plotting procedures for biostatistics. R package version 0.9–70

  68. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2016) Vegan: community ecology package. In: editor (ed.)^(eds.) book vegan: community ecology package, vol., City

  69. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bonnet X, Shine R, Lourdais O (2002) Taxonomic chauvinism. Trends Ecol Evol 17

  72. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Front Immunol 6:111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown. Mol Ecol 25:3776–3800

    Article  PubMed  Google Scholar 

  75. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

  76. Brucker RM, Bordenstein SR (2013) The capacious hologenome. Zoology (Jena) 116:260–261

    Article  Google Scholar 

  77. Petranka JW (1998) Salamanders of the United States and Canada. Smithsonian Institution Press, Washington

    Google Scholar 

  78. Wyman RL (1998) Experimental assessment of salamanders as predators of detrital food webs: effects of invertebrates, decomposition and the carbon cycle. Biodivers Conserv 7:641–650

    Article  Google Scholar 

  79. Smith CC, Snowberg LK, Caporaso JG, Knight R, Bolnick DI (2015) Dietary input of microbes and host genetic variation shape among-population differences in stickleback gut microbiota. ISME J 9:2515–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fitzpatrick BM, Allison AL (2014) Similarity and differentiation between bacteria associated with skin of salamanders (Plethodon jordani) and free-living assemblages. FEMS Microbiol Ecol 88:482–494

    Article  CAS  PubMed  Google Scholar 

  81. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840

    Article  CAS  PubMed  Google Scholar 

  82. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820

    Article  PubMed  Google Scholar 

  83. Bletz MC, Goedbloed DJ, Sanchez E, Reinhardt T, Tebbe CC, Bhuju S, Geffers R, Jarek M, Vences M, Steinfartz S (2016) Amphibian gut microbiota shifts differentially in community structure but converges on habitat-specific predicted functions. Nat Commun 15:13699

    Article  CAS  Google Scholar 

  84. Woodhams DC, Alford RA, Antwis RE, Archer H, Becker MH, Belden LK, Bell SC, Bletz M, Daskin JH, Davis LR, Flechas SV, Lauer A, Gonzalez A, Harris RN, Holden WM, Hughey MC, Ibáñez R, Knight R, Kueneman J, Rabemananjara F, Reinert LK, Rollins-Smith LA, Roman-Rodriguez F, Shaw SD, Walke JB, McKenzie V (2015) Antifungal isolates database of amphibian skin-associated bacteria and function against emerging fungal pathogens. Ecology 96:595–595

    Article  Google Scholar 

  85. Becker MH, Walke JB, Murrill L, Woodhams DC, Reinert LK, Rollins-Smith LA, Burzynski EA, Umile TP, Minbiole KP, Belden LK (2015) Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis. Mol Ecol 24:1628–1641

    Article  PubMed  Google Scholar 

  86. Walke JB, Belden LK (2016) Harnessing the microbiome to prevent fungal infections: lessons from amphibians. PLoS Pathog 12:e1005796

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Rebollar EA, Bridges T, Hughey MC, Medina D, Belden LK, Harris RN (2019) Integrating the role of antifungal bacteria into skin symbiotic communities of three Neotropical frog species. ISME J 13:1763–1775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Groff JM, Mughannam A, McDowell TS, Wong A, Dykstra MJ, Frye FL, Hedrick RP (1991) An epizootic of cutaneous zygomycosis in cultured dwarf African clawed frogs (Hymenochirus curtipes) due to Basidiobolus ranarum. J Med Vet Mycol 29:215–223

    Article  CAS  PubMed  Google Scholar 

  89. Taylor SK, Williams ES, Mills KW (1999) Experimental exposure of Canadian toads to Basidiobolus ranarum. J Wildl Dis 35:58–63

    Article  CAS  PubMed  Google Scholar 

  90. Taylor SK, Williams ES, Thorne ET, Mills KW, Withers DI, Pier AC (1999) Causes of mortality of the Wyoming toad. J Wildl Dis 35:49–57

    Article  CAS  PubMed  Google Scholar 

  91. Parker J, Anderson SH, Lindzey FJ (2000) Bufo baxteri (Wyoming toad). Predation. Herpetol Rev 31:167–168

    Google Scholar 

  92. Brucker RM, Bordenstein SR (2013) The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia. Science 341:667–669

    Article  CAS  PubMed  Google Scholar 

  93. Brunetti AE, Lyra ML, Melo WG, Andrade LE, Palacios-Rodríguez P, Prado BM, Haddad CF, Pupo MT, Lopes NP (2019) Symbiotic skin bacteria as a source for sex-specific scents in frogs. Proc Natl Acad Sci U S A 116:2124–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharon G, Segal D, Ringo JM, Hefetz A, Zilber-Rosenberg I, Rosenberg E (2010) Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A 107:20051–20056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

DMW would like to thank Michael Edelbrock, Brandon Edelbrock, Julia Edelbrock, Brandy Lawrence, Michael McAndrew, Ingrid Godfrey, Jeff Miller, and Dakota Esterline for assistance on research trips.

Author information

Authors and Affiliations

Authors

Contributions

DMW, SPG, CK, JW, CC conceived the study. DMW, SPG, CK, CC, JR collected specimens and contributed to field work. JW sequenced the salamander specimens, DMW ran the bioinformatics analyses, and MA, MM, MG, AG, AR ran the statistical analyses. DMW, SPG, CK, AJH, MG, AG, AR wrote the manuscript and all authors contributed equally to revisions.

Corresponding author

Correspondence to Donald M. Walker.

Ethics declarations

Tennessee Technological University research policies and guidelines for the ethical treatment of animals were followed during this study (TTU-IACUC—15-16—001). Research collection permits were obtained from the appropriate governmental organizations (CHE901200, 14-SC00873, TWRA3886, AL2014044693068680, AL2016021753868680, 29-WJH-16-184, MS0722163).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

Salamander specimen collection data. (XLSX 13 kb)

Supplemental Figure 1

Nuclear RPL12 maximum likelihood gene tree. (PDF 2 kb)

Supplemental Figure 2

Complete mitochondrial (cytb) tree. (PDF 29 kb)

ESM 1

Commands to reproduce analyses in mothur. (R 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walker, D.M., Hill, A.J., Albecker, M.A. et al. Variation in the Slimy Salamander (Plethodon spp.) Skin and Gut-Microbial Assemblages Is Explained by Geographic Distance and Host Affinity. Microb Ecol 79, 985–997 (2020). https://doi.org/10.1007/s00248-019-01456-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01456-x

Keywords

Navigation