Skip to main content
Log in

A Tripartite Microbial-Environment Network Indicates How Crucial Microbes Influence the Microbial Community Ecology

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Current technologies could identify the abundance and functions of specific microbes, and evaluate their individual effects on microbial ecology. However, these microbes interact with each other, as well as environmental factors, in the form of complex network. Determination of their combined ecological influences remains a challenge. In this study, we developed a tripartite microbial-environment network (TMEN) analysis method that integrates microbial abundance, metabolic function, and environmental data as a tripartite network to investigate the combined ecological effects of microbes. Applying TMEN to analyzing the microbial-environment community structure in the sediments of Hangzhou Bay, one of the most seriously polluted coastal areas in China, we found that microbes were well-organized into 4 bacterial communities and 9 archaeal communities. The total organic carbon, sulfate, chemical oxygen demand, salinity, and nitrogen-related indexes were detected as crucial environmental factors in the microbial-environmental network. With close interactions with these environmental factors, Nitrospirales and Methanimicrococcu were identified as hub microbes with connection advantage. Our TMEN method could close the gap between lack of efficient statistical and computational approaches and the booming of large-scale microbial genomic and environmental data. Based on TMEN, we discovered a potential microbial ecological mechanism that crucial species with significant influence on the microbial community ecology would possess one or two of the community advantages for enhancing their ecological status and essentiality, including abundance advantage and connection advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu Z, Qiuqian L, Yao Z, Wang X, Huang L, Zheng J, Wang K, Li L, Zhang D (2018) Effects of a commercial microbial agent on the bacterial communities in shrimp culture system. Front Microbiol 9:2430. https://doi.org/10.3389/fmicb.2018.02430

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eichmeier A, Kiss T, Necas T, Penazova E, Tekielska D, Bohunicka M, Valentova L, Cmejla R, Morais D, Baldrian P (2018) High-throughput sequencing analysis of the bacterial community in stone fruit phloem tissues infected by “Candidatus Phytoplasma prunorum.”. Microb Ecol 77:664–675. https://doi.org/10.1007/s00248-018-1250-9

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Garcera M, Touchon M, Brisse S, Rocha EPC (2017) Metagenomic assessment of the interplay between the environment and the genetic diversification of Acinetobacter. Environ Microbiol 19:5010–5024. https://doi.org/10.1111/1462-2920.13949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Yang Q, Ling J, van Nostrand JD, Shi Z, Zhou J, Dong J (2017) Diversity and structure of diazotrophic communities in mangrove rhizosphere, revealed by high-throughput sequencing. Front Microbiol 8:2032. https://doi.org/10.3389/fmicb.2017.02032

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mukherjee A, Chettri B, Langpoklakpam JS, Basak P, Prasad A, Mukherjee AK, Bhattacharyya M, Singh AK, Chattopadhyay D (2017) Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci Rep 7:1108. https://doi.org/10.1038/s41598-017-01126-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Volant A, Héry M, Desoeuvre A, Casiot C, Morin G, Bertin PN, Bruneel O (2016) Spatial distribution of eukaryotic communities using high-throughput sequencing along a pollution gradient in the arsenic-rich creek sediments of Carnoulès mine, France. Microb Ecol 72:608–620. https://doi.org/10.1007/s00248-016-0826-5

    Article  CAS  PubMed  Google Scholar 

  7. Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79:3148–3155. https://doi.org/10.1128/AEM.00256-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Monteverde DR, Sylvan JB, Suffridge C, Baronas JJ, Fichot E, Fuhrman J, Berelson W, Sañudo-Wilhelmy SA (2018) Distribution of extracellular flavins in a coastal marine basin and their relationship to redox gradients and microbial community members. Environ Sci Technol 52(21):12265–12274. https://doi.org/10.1021/acs.est.8b02822

    Article  CAS  PubMed  Google Scholar 

  9. Zhou J, Richlen ML, Sehein TR, Kulis DM, Anderson DM, Cai Z (2018) Microbial community structure and associations during a marine dinoflagellate bloom. Front Microbiol 9:1201. https://doi.org/10.3389/fmicb.2018.01201

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146. https://doi.org/10.1038/nrmicro3417

    Article  CAS  PubMed  Google Scholar 

  11. Barberán A, Bates ST, Casamayor EO, Fierer N (2012) Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J 6:343–351. https://doi.org/10.1038/ismej.2011.119

    Article  CAS  PubMed  Google Scholar 

  12. Berry D, Widder S (2014) Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front Microbiol 5:219. https://doi.org/10.3389/fmicb.2014.00219

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ding J, Zhang Y, Deng Y, Cong J, Lu H, Sun X, Yang C, Yuan T, van Nostrand JD, Li D, Zhou J, Yang Y (2015) Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci Rep 5:7994. https://doi.org/10.1038/srep07994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, Zhang T (2015) Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J; London 9:2490–2502. http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1038/ismej.2015.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fernandez M, Riveros JD, Campos M, Mathee K, Narasimhan G (2015) Microbial “social networks.”. BMC Genomics 16:S6. https://doi.org/10.1186/1471-2164-16-S11-S6

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hugerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8:1561. https://doi.org/10.3389/fmicb.2017.01561

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ringnér M (2008) What is principal component analysis? Nat Biotechnol 26:303–304. https://doi.org/10.1038/nbt0308-303

    Article  CAS  PubMed  Google Scholar 

  18. Zhang Y, Chen L, Sun R, Dai T, Tian J, Wen D (2015) Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China. Appl Microbiol Biotechnol; Heidelberg 99:4495–4507. http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1007/s00253-014-6352-9

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Zhen Y, He H, Lu X, Mi T, Yu Z (2014) Diversity, abundance, and spatial distribution of ammonia-oxidizing [beta]-proteobacteria in sediments from Changjiang estuary and its adjacent area in East China Sea. Microb Ecol; Heidelberg 67:788–803. http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1007/s00248-013-0341-x

    Article  PubMed  Google Scholar 

  20. Zhang Y, Chen L, Sun R, Dai T, Tian J, Liu R, Wen D (2014) Effect of wastewater disposal on the bacterial and archaeal community of sea sediment in an industrial area in China. FEMS Microbiol Ecol 88:320–332. https://doi.org/10.1111/1574-6941.12298

    Article  CAS  PubMed  Google Scholar 

  21. Hou M, Xiong J, Wang K, Ye X, Ye R, Wang Q, Hu C, Zhang D (2014) Communities of sediment ammonia-oxidizing bacteria along a coastal pollution gradient in the East China Sea. Mar Pollut Bull 86:147–153. https://doi.org/10.1016/j.marpolbul.2014.07.031

    Article  CAS  PubMed  Google Scholar 

  22. Xiong J, Ye X, Wang K, Chen H, Hu C, Zhu J, Zhang D (2014) Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea. Appl Environ Microbiol 80:1919–1925. https://doi.org/10.1128/AEM.03731-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng B-W, Li X-R, Wang J-H, Hu ZY, Meng H, Xiang LY, Quan ZX (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70:236–248. https://doi.org/10.1111/j.1574-6941.2009.00772.x

    Article  CAS  Google Scholar 

  24. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  CAS  PubMed  Google Scholar 

  25. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods; New York 10:996–998. http://dx.doi.org.ezp-prod1.hul.harvard.edu/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  26. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. https://doi.org/10.1093/nar/gkn879

    Article  CAS  PubMed  Google Scholar 

  28. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  29. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu L, Liu M, Wilkinson DM, Chen H, Yu X, Yang J (2017) DNA metabarcoding reveals that 200-μm-size-fractionated filtering is unable to discriminate between planktonic microbial and large eukaryotes. Mol Ecol Resour 17:991–1002. https://doi.org/10.1111/1755-0998.12652

    Article  CAS  PubMed  Google Scholar 

  31. Liu L, Yang J, Yu Z, Wilkinson DM (2015) The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China. ISME J 9:2068–2077. https://doi.org/10.1038/ismej.2015.29

    Article  PubMed  PubMed Central  Google Scholar 

  32. Liu M, Xue Y, Yang J (2019) Rare plankton subcommunities are far more affected by DNA extraction kits than abundant plankton. Front Microbiol 10:454. https://doi.org/10.3389/fmicb.2019.00454

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dai T, Zhang Y, Tang Y et al (2016) Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay. FEMS Microbiol Ecol 92:fiw150. https://doi.org/10.1093/femsec/fiw150

    Article  CAS  PubMed  Google Scholar 

  34. Xue Y, Chen H, Yang JR, Liu M, Huang B, Yang J (2018) Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. ISME J 12:2263–2277. https://doi.org/10.1038/s41396-018-0159-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mo Y, Zhang W, Yang J, Lin Y, Yu Z, Lin S (2018) Biogeographic patterns of abundant and rare bacterioplankton in three subtropical bays resulting from selective and neutral processes. ISME J 12:2198–2210. https://doi.org/10.1038/s41396-018-0153-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Liu M, Yu Z, Yu X, Xue Y, Huang B, Yang J (2017) Invasion by cordgrass increases microbial diversity and alters community composition in a mangrove nature reserve. Front Microbiol 8:2503. https://doi.org/10.3389/fmicb.2017.02503

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen W, Pan Y, Yu L, Yang J, Zhang W (2017) Patterns and processes in marine microeukaryotic community biogeography from Xiamen coastal waters and intertidal sediments, Southeast China. Front Microbiol 8:1912. https://doi.org/10.3389/fmicb.2017.01912

    Article  PubMed  PubMed Central  Google Scholar 

  38. Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31:2882–2884. https://doi.org/10.1093/bioinformatics/btv287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  40. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659. https://doi.org/10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  42. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Islam KR, Weil RR (1998) A rapid microwave digestion method for colorimetric measurement of soil organic carbon. Commun Soil Sci Plant Anal 29(15–16):2269–2284. https://doi.org/10.1080/00103629809370110

    Article  CAS  Google Scholar 

  47. Parker FW, Fudge JF (1927) Soil phosphorus studies: I. the colorimetric determination of organic and inorganic phosphorus in soil extracts and the soil solution. Soil Sci 24:109–118 https://journals.lww.com/soilsci/toc/1927/08000

    Article  CAS  Google Scholar 

  48. Bradstreet RB (1954) Kjeldahl method for organic nitrogen. Anal Chem 26(1):185–187. https://doi.org/10.1021/ac60085a028

    Article  CAS  Google Scholar 

  49. Junker BH, Schreiber F (2008) Analysis of biological networks. Wiley-Interscience, Hoboken, pp 314–328

    Book  Google Scholar 

  50. Lu H-P, Wagner HH, Chen X-Y (2007) A contribution diversity approach to evaluate species diversity. Basic Appl Ecol 8:1–12. https://doi.org/10.1016/j.baae.2006.06.004

    Article  CAS  Google Scholar 

  51. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

    Article  Google Scholar 

  52. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41. https://doi.org/10.2307/3033543

    Article  Google Scholar 

  53. Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, Rivalta I, Ho J, Batista VS (2018) Eigenvector centrality for characterization of protein allosteric pathways. PNAS 115:E12201–E12208. https://doi.org/10.1073/pnas.1810452115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Newman MEJ (2008) Mathematics of networks. In: Palgrave Macmillan (ed) The new Palgrave dictionary of economics. Palgrave Macmillan UK, London, pp 1–8

    Google Scholar 

  55. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci 103:8577–8582. https://doi.org/10.1073/pnas.0601602103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech: Theory Exp 2008:P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  Google Scholar 

  57. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. PNAS 99:7821–7826. https://doi.org/10.1073/pnas.122653799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76. https://doi.org/10.1103/PhysRevE.76.066102

  59. Murata T (2010) Detecting communities from tripartite networks. In: Proceedings of the 19th international conference on World wide web - WWW ’10. ACM Press, Raleigh, North Carolina, USA, p 1159

  60. Jiao S, Chen W, Wei G (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol 26:5305–5317. https://doi.org/10.1111/mec.14218

    Article  CAS  PubMed  Google Scholar 

  61. Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229. https://doi.org/10.1038/nrmicro3400

    Article  CAS  PubMed  Google Scholar 

  62. Magurran AE, Henderson PA (2003) Explaining the excess of rare species in natural species abundance distributions. Nature 422:714–716. https://doi.org/10.1038/nature01547

    Article  CAS  PubMed  Google Scholar 

  63. Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere.”. Proc Natl Acad Sci U S A 103:12115–12120. https://doi.org/10.1073/pnas.0605127103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Y, Hatt JK, Tsementzi D, Rodriguez-R LM, Ruiz-Pérez CA, Weigand MR, Kizer H, Maresca G, Krishnan R, Poretsky R, Spain JC, Konstantinidis KT (2017) Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem 10:1128. Appl Environ Microbiol 83. https://doi.org/10.1128/AEM.03321-16

  65. Ashby MN, Rine J, Mongodin EF, Nelson KE, Dimster-Denk D (2007) Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities. Appl Environ Microbiol 73:4532–4542. https://doi.org/10.1128/AEM.02956-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Küsel K, Rillig MC, Rivett DW, Salles JF, van der Heijden MGA, Youssef NH, Zhang X, Wei Z, Hol WHG (2017) Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J 11:853–862. https://doi.org/10.1038/ismej.2016.174

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227. https://doi.org/10.1016/S0958-1669(02)00315-4

    Article  CAS  PubMed  Google Scholar 

  68. Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard RH, von Bergen M, Rattei T, Bendinger B, Nielsen PH, Wagner M (2015) Complete nitrification by Nitrospira bacteria. Nature 528:504–509. https://doi.org/10.1038/nature16461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ng KK, Shi X, Ong SL, Ng HY (2016) Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment. Bioresour Technol 200:1076–1079. https://doi.org/10.1016/j.biortech.2015.10.100

    Article  CAS  PubMed  Google Scholar 

  70. Lee J, Kim E, Han G, Tongco JV, Shin SG, Hwang S (2018) Microbial communities underpinning mesophilic anaerobic digesters treating food wastewater or sewage sludge: a full-scale study. Bioresour Technol 259:388–397. https://doi.org/10.1016/j.biortech.2018.03.052

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank the following people in sample collection and pretreatment: Mr. Bei Huang and Mr. Qinglin Mu from Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station; Dr. Rui Liu and Ms. Yaqiong Lan from Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University. We also appreciate the advice about network visualization from Mr. Naijia Xiao at the Institute for Environmental Genomics, University of Oklahoma, and the advice about statistical methods from Mr. Molei Liu at the Department of Biostatistics, Harvard T.H. Chan School of Public Health.

Funding

This study was supported by General Projects (Nos. 51678003 and 51678334) granted by the Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Wen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 29901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Dai, T., Su, Z. et al. A Tripartite Microbial-Environment Network Indicates How Crucial Microbes Influence the Microbial Community Ecology. Microb Ecol 79, 342–356 (2020). https://doi.org/10.1007/s00248-019-01421-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01421-8

Keywords

Navigation