Skip to main content
Log in

Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Subterranean rodents are considered major soil engineers, as they can locally modify soil properties by their burrowing activities. In this study, the effect of a subterranean rodent of the genus Ctenomys on soil properties and root endophytic fungal propagules in a shrub desert of northwest Argentina was examined. Our main goal was to include among root endophytic fungi not only arbuscular mycorrhiza but also the dark septate endophytes. We compared the abundance of fungal propagules as well as several microbiological and physicochemical parameters between soils from burrows and those from the surrounding landscape. Our results show that food haulage, the deposition of excretions, and soil mixing by rodents’ burrowing promote soil patchiness by (1) the enrichment in both types of root endophytic fungal propagules; (2) the increase in organic matter and nutrients; and (3) changes in soil edaphic properties including moisture, field capacity, and texture. These patches may play a critical role as a source of soil heterogeneity in desert ecosystems, where burrows constructed in interpatches of bare soil can act, once abandoned, as “islands of fertility,” promoting the establishment of plants in an otherwise hostile environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Darwin C (1881) The formation of vegetable mould through the action of worms, with observations on their habits. J. Murray, London

    Book  Google Scholar 

  2. Bardgett R (2010) The biology of soil: a community and ecosystem approach

  3. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189. https://doi.org/10.3114/sim.53.1.173

    Article  Google Scholar 

  4. Smith SE, Read DJ (2008) Mycorrhizal symbiosis 3rd edn. Academic Press, San Diego, p 787

    Google Scholar 

  5. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211. https://doi.org/10.1007/s005720100112

    Article  Google Scholar 

  6. Wu Y, Liu T, He X (2009) Mycorrhizal and dark septate endophytic fungi under the canopies of desert plants in Mu Us Sandy Land of China. Front Agric China 3:164–170. https://doi.org/10.1007/s11703-009-0026-x

    Article  Google Scholar 

  7. Mandyam K, Loughin T, Jumpponen A. (2010) Isolation and morphological and metabolic characterization of common endophytes in annually burned tallgrass prairie. Mycologia 102:813–821 . doi: https://doi.org/10.3852/09-212

  8. Peterson RL, Wagg C, Pautler M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 456:445–456. https://doi.org/10.1139/B08-016

    Article  CAS  Google Scholar 

  9. Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  PubMed  CAS  Google Scholar 

  10. Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature 348:232–234

    Article  CAS  Google Scholar 

  11. Aguiar MR, Sala OE (1999) Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol 14:273–277. https://doi.org/10.1016/S0169-5347(99)01612-2

    Article  PubMed  CAS  Google Scholar 

  12. Tewksbury JJ, Lloyd JD (2001) Positive interactions under nurse-plants: spatial scale, stress gradients and benefactor size. Oecologia 127:425–434. https://doi.org/10.1007/s004420000614

    Article  PubMed  Google Scholar 

  13. Boulton AM, Amberman KD (2006) How ant nests increase soil biota richness and abundance: a field experiment. Biodivers Conserv 15:69–82. https://doi.org/10.1007/s10531-004-2177-7

    Article  Google Scholar 

  14. Jones CG, Lawton JH, Shachak M (1996) Organisms as ecosystem engineers BT—ecosystem management: selected readings. In: Samson FB, Knopf FL (eds) Ecosystem Management. Springer, New York, pp 130–147

  15. Grant WE, French NR, Folse LJ (1980) Effects of pocket gopher mounds on plant production in shortgrass prairie ecosystems. Southwest Nat 25:215–224. https://doi.org/10.2307/3671243

    Article  Google Scholar 

  16. De Bruyn L, Conacher AJ (1990) The role of termites and ants in soil modification—a review. Soil Res 28:55–93

    Google Scholar 

  17. Whitford WG, Kay FR (1999) Biopedturbation by mammals in deserts: a review. J Arid Environ 41:203–230. https://doi.org/10.1006/jare.1998.0482

    Article  Google Scholar 

  18. Mun H-T, Whitford WG (1997) Changes in mass and chemistry of plant roots during long-term decomposition on a Chihuahuan Desert watershed. Biol Fertil Soils 26:16–22. https://doi.org/10.1007/s003740050336

    Article  Google Scholar 

  19. Whitford WG, DiMarco R (1995) Variability in soils and vegetation associated with harvester ant (Pogonomyrmex rugosus) nests on a Chihuahuan Desert watershed. Biol Fertil Soils 20:169–173. https://doi.org/10.1007/BF00336554

    Article  CAS  Google Scholar 

  20. Dhillion SS (1999) Environmental heterogeneity, animal disturbances, microsite characteristics, and seedling establishment in a Quercus havardii community. Restor Ecol 7:399–406. https://doi.org/10.1046/j.1526-100X.1999.72035.x

    Article  Google Scholar 

  21. Chew R, Whitford W (1992) A long-term positive effect of kangaroo rats (Dipodomys spectabilis) on creosotebushes (Larrea tridentata). J Arid Environ 22:375–386

    Article  Google Scholar 

  22. Stolp H (1988) Microbial ecology: organisms, habitats, activities, Cambridge. Cambridge University Press, Cambridge

    Google Scholar 

  23. Desmet P, Cowling R (1999) Patch creation by fossorial rodents: a key process in the revegetation of phytotoxic arid soils. J Arid Environ 43:35–45. https://doi.org/10.1006/jare.1999.0535

    Article  Google Scholar 

  24. Kerley GIH, Whitford WG, Kay FR (2004) Effects of pocket gophers on desert soils and vegetation. J Arid Environ 58:155–166. https://doi.org/10.1016/j.jaridenv.2003.08.001

    Article  Google Scholar 

  25. Malizia AI, Kittlein MJ, Busch C (2000) Influence of the subterranean herbivorous rodent Ctenomys talarum on vegetation and soil. Z Saugetierkd 65:172–182

    Google Scholar 

  26. Lara N, Sassi P, Borghi CE et al (2007) Effect of herbivory and disturbances by tuco-tucos (Ctenomys mendocinus) on a plant community in the southern Puna Desert. Arct Antarct Alp Res 39:110–116

    Article  Google Scholar 

  27. Zhang Y, Zhang Z, Liu J (2003) Burrowing rodents as ecosystem engineers: the ecology and management of plateau zokors Myospalax fontanierii in alpine meadow ecosystems on the Tibetan Plateau. Mammal Rev 33:284–294. https://doi.org/10.1046/j.1365-2907.2003.00020.x

    Article  Google Scholar 

  28. Kuznetsova TA, Kam M, Khokhlova IS, Kostina NV, Dobrovolskaya TG, Umarov MM, Degen AA, Shenbrot GI, Krasnov BR (2013) Desert gerbils affect bacterial composition of soil. Microb Ecol 66:940–949. https://doi.org/10.1007/s00248-013-0263-7

    Article  PubMed  Google Scholar 

  29. Allen MF, MacMahon JA (1988) Direct VA mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 82:754–755

    Article  Google Scholar 

  30. Titus JH, Nowak RS, Smith SD (2002) Soil resource heterogeneity in the Mojave Desert. J Arid Environ 52:269–292. https://doi.org/10.1006/jare.2002.1010

    Article  Google Scholar 

  31. Fracchia S, Krapovickas L, Aranda-Rickert a, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75:1016–1023. https://doi.org/10.1016/j.jaridenv.2011.04.034

    Article  Google Scholar 

  32. Abraham E, del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R (2009) Overview of the geography of the Monte Desert biome (Argentina). J Arid Environ 73:144–153. https://doi.org/10.1016/j.jaridenv.2008.09.028

    Article  Google Scholar 

  33. Aranda-Rickert A, Diez P, Marazzi B (2014) Extrafloral nectar fuels ant life in deserts. AoB Plants 6:plu068. https://doi.org/10.1093/aobpla/plu068

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bisigato AJ, Villagra PE, Ares JO, Rossi BE (2009) Vegetation heterogeneity in Monte Desert ecosystems: a multi-scale approach linking patterns and processes. J Arid Environ 73:182–191. https://doi.org/10.1016/j.jaridenv.2008.09.001

    Article  Google Scholar 

  35. Cook J, Lessa E (1998) Are rates of diversification in subterranean south american tuco-tucos (genus ctenomys, rodentia: octodontidae) unusually high? Evolution 52:1521–1527

    PubMed  Google Scholar 

  36. Morgan CC, Verzi DH (2006) Morphological diversity of the humerus of the South American subterranean rodent Ctenomys (Rodentia, Ctenomyidae). J Mammal 87:1252–1260. https://doi.org/10.1644/06-MAMM-A-033R1.1

    Article  Google Scholar 

  37. Pearson OP (1984) Taxonomy and natural history of some fossorial rodents of Patagonia, southern Argentina. J Zool 202:225–237. https://doi.org/10.1111/j.1469-7998.1984.tb05952.x

    Article  Google Scholar 

  38. Reig OA (1970) Ecological notes on the fossorial octodont rodent Spalacopus Cyanus (Molina). J Mammal 51:592–601

    Article  Google Scholar 

  39. Valentinuzzi VS, Oda GA, Araujo JF, Ralph MR (2009) Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii). Chronobiol Int 26:14–27. https://doi.org/10.1080/07420520802686331

    Article  PubMed  Google Scholar 

  40. Tachinardi P, Bicudo JEW, Oda GA, Valentinuzzi VS (2014) Rhythmic 24 h variation of core body temperature and locomotor activity in a subterranean rodent (Ctenomys aff. knighti)—the tuco-tuco. PLoS One 9:1–8. https://doi.org/10.1371/journal.pone.0085674

    Article  CAS  Google Scholar 

  41. Mares MA, Hulse AC (1977) Patterns of some vertebrate communities in creosote bush deserts. Creosote Bush Biol Chem Larrea New World Deserts, Dowden, Hutchinson Ross, Stroudsburg, Pennsylvania 209–226

  42. Borruel N, Campos CM, Giannoni SM, Borghi CE (1998) Effect of herbivorous rodents (cavies and tuco-tucos) on a shrub community in the Monte Desert, Argentina. J Arid Environ 39:33–37

    Article  Google Scholar 

  43. Altuna CA, Francescoli G, Tassino B (1999) Ecoetología y conservación de mamíferos subterráneos de distribución restringida: el caso de Ctenomys pearsoni. Etologia 7:47–54

    Google Scholar 

  44. Sieverding E, Friedrichsen J, Suden W (1991) Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Dtsch Gesellschaft fuer Tech Zusammenarbeit

  45. Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247. https://doi.org/10.1007/s00572-003-0222-0

    Article  PubMed  CAS  Google Scholar 

  46. McGonigle TP, Miller MH, Evans DG et al (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

    Article  Google Scholar 

  47. Fisher RA, Yates F (1963) Statistical tables for biological, agricultural and medical research, edited by RA Fisher and F. Yates. Oliver and Boyd, Edinburgh

    Google Scholar 

  48. An ZQ, Hendrix JW, Hershman DE, Henson GT (1990) Evaluation of the “most probable number”(MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi. Mycol 82:576–581

    Google Scholar 

  49. Anderson J (1982) Soil respiration. In: Methods of soil analysis. Soil Science Society of America, Madison, Wisconsin, USA, pp 831–871

  50. Sparks DL, Page AL, Helmke PA, et al (1996) Methods of soil analysis: chemical methods. In: Chemical methods, 3rd ed. American Society of Agronomy, Madison: ASA and SSSA, p 1390

  51. Bray RH, Kurtz LT (1945) Determination of total, organic, and available forms of soil phosphorus in soil. Soil Sci 59:39–46

    Article  CAS  Google Scholar 

  52. Daniel PE, Marbán LG (1989) Adaptación de un método espectrofotométrico reductivo para la determinación de nitratos en estractos de suelos. Boletín la Asoc Argentina la Cienc del Suelo 583:3–8

    Google Scholar 

  53. Colman EA (1946) A laboratory procedure for determining the field capacity of soils. Soil Sci 67:277–283

    Google Scholar 

  54. R Core Team (2017) R: A language and environment for statistical computing

  55. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Rose SL, Youngberg CT (1981) Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular–arbuscular mycorrhizae on growth, nodulation, and nitrogen fixation. Can J Bot 59:34–39

    Article  CAS  Google Scholar 

  57. Trappe JM (1981) Mycorrhizae and productivity of arid and semiarid rangelands. In: Advances in food-producing systems for arid and semiarid lands, Part A. Elsevier, pp 581–599

  58. Mejstřík VK, Cudlin P (1983) Mycorrhiza in some plant desert species in Algeria. In: Tree root systems and their mycorrhizas. Springer, pp 363–366

  59. Bloss HE, Walker C (1987) Some endogonaceous mycorrhizal fungi of the Santa Catalina mountains in Arizona. Mycologia 79:649–654

    Article  Google Scholar 

  60. Carrillo-Garcia A, León De La Luz JL, Bashan Y, Bethlenfalvay GJ (1999) Nurse plants, mycorrhizae, and plant establishment in a disturbed area of the Sonoran Desert. Restor Ecol 7:321–335. https://doi.org/10.1046/j.1526-100X.1999.72027.x

    Article  Google Scholar 

  61. Bethlenfalvay GJ, Dakessian S, Pacovsky RS (1984) Mycorrhizae in a southern California desert: ecological implications. Can J Bot 62:519–524. https://doi.org/10.1139/b84-077

    Article  Google Scholar 

  62. Cui M, Nobel PS (1992) Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol 122:643–649. https://doi.org/10.1111/j.1469-8137.1992.tb00092.x

    Article  CAS  Google Scholar 

  63. Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance generated by plant/fungal symbiosis. Science 298:1581. https://doi.org/10.1126/science.1072191

    Article  PubMed  CAS  Google Scholar 

  64. Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793. https://doi.org/10.1111/j.1469-8137.2010.03611.x

    Article  PubMed  CAS  Google Scholar 

  65. Rodriguez RJ, Redman RS, Henson JM (2004) The role of fungal symbioses in the adaptation of plants to high stress environments. Mitig Adapt Strateg Glob Chang 9:261–272. https://doi.org/10.1023/B:MITI.0000029922.31110.97

    Article  Google Scholar 

  66. Knapp DG, Kovács GM, Zajta E, Groenewald JZ, Crous PW (2015) Dark septate endophytic pleosporalean genera from semiarid areas. Persoonia 35:87–100. https://doi.org/10.3767/003158515X687669

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  67. McGee PA (1989) Variation in propagule numbers of vesicular-arbuscular mycorrhizal fungi in a semi-arid soil. Mycol Res 92:28–33

    Article  Google Scholar 

  68. N R, P J, Barea J (1996) Assessment of natural mycorrhizal potential in a desertified semiarid ecosystem. Appl Environ Microbiol 62:842–847

    Google Scholar 

  69. Sigüenza C, Espejel I, Allen EB (1996) Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza 6:151–157

    Article  Google Scholar 

  70. He X, Mouratov S, Steinberger Y (2002) Temporal and spatial dynamics of vesicular-arbuscular mycorrhizal fungi under the canopy of Zygophyllum dumosum Boiss. in the Negev Desert. J Arid Environ 52:379–387. https://doi.org/10.1006/jare.2002.1000

    Article  Google Scholar 

  71. Ayarbe JP, Kieft TL (2000) Mammal mounds stimulate microbial activity in a semiarid shrubland. Ecology 81:1150–1154

    Article  Google Scholar 

  72. Kuznetsova TA, Roshchina ES, Kostina NV, Umarov MM (2006) Soil biological activity in the Chernye Zemli, Kalmykia, inhabited by gerbils Meriones tamariscinus and M. meridianus. Biol Bull 33:92–98

    Article  CAS  Google Scholar 

  73. Nadler A, Steinberger Y (1993) Trends in structure, plant growth, and microorganism interrelations in the soil. Soil Sci 155:114–122

    Article  Google Scholar 

  74. Wetzel PR, Van Der Valk AG, Newman S et al (2009) Heterogeneity of phosphorus distribution in a patterned landscape, the Florida Everglades. Plant Ecol 200:83–90. https://doi.org/10.1007/s11258-008-9449-3

    Article  Google Scholar 

  75. Schlesinger WH, Bernhardt E Biogeochemistry: an analasis of global change

  76. Holford ICR, Mattingly GEG (1976) Phosphate adsorption and availability plant of phosphate. Plant Soil 44:377–389

    Article  CAS  Google Scholar 

  77. Cameron SL (1998) Colonization of Populus tremuloides seedlings by the fungus Phialocephala fortinii in the presence of the ectomycorrhal fungus Thelephora terrestris. The University of Guelph, Guelph

    Google Scholar 

  78. Johnson DL (1990) Biomantle evolution and the redistribution of earth materials and artifacts. Soil Sci 149:84–102

    Article  Google Scholar 

  79. Camargo-Ricalde SL, Dhillion SS (2003) Endemic Mimosa species can serve as mycorrhizal “resource islands” within semiarid communities of the Tehuacán-Cuicatlán Valley, Mexico. Mycorrhiza 13:129–136. https://doi.org/10.1007/s00572-002-0206-5

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-PICT 0546).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Miranda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, V., Rothen, C., Yela, N. et al. Subterranean Desert Rodents (Genus Ctenomys) Create Soil Patches Enriched in Root Endophytic Fungal Propagules. Microb Ecol 77, 451–459 (2019). https://doi.org/10.1007/s00248-018-1227-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-018-1227-8

Keywords

Navigation