Skip to main content

Advertisement

Log in

The Combined Effect of Temperature and Host Clonal Line on the Microbiota of a Planktonic Crustacean

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Host-associated microbiota vary across host individuals and environmental conditions, but the relative importance of their genetic background versus their environment is difficult to disentangle. We sought to experimentally determine the factors shaping the microbiota of the planktonic Crustacean, Daphnia magna. We used clonal lines from a wide geographic distribution, which had been kept under standardized conditions for over 75 generations. Replicate populations were kept for three generations at 20 and 28 °C. The interaction of the host clonal line and environment (i.e., temperature) influenced microbiota community characteristics, including structure, the relative abundance of common microbial species, and the microbial richness and phylogenetic diversity. We did not find any correlation between host-associated microbiota and the geographic origin of the clones or their temperature tolerance. Our results highlight the prominent effects that host clonal lineage and its interaction with the environment has on host-associated microbiota composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fan L, Liu M, Simister R, Webster NS, Thomas T (2013) Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J 7:991–1002. https://doi.org/10.1038/ismej.2012.165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J, Rey FE, Smith MI, Simon GM, Scheffrahn RH, Woebken D, Spormann AM, Van Treuren W, Ursell LK, Pirrung M, Robbins-Pianka A, Cantarel BL, Lombard V, Henrissat B, Knight R, Gordon JI (2014) Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253–266. https://doi.org/10.1016/j.cell.2014.09.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Loso T, Bosch TCG (2012) MyD88-deficient hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A 109:19374–19379. https://doi.org/10.1073/pnas.1213110109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Garrett WS, Gordon JI, Glimcher LH (2010) Homeostasis and inflammation in the intestine. Cell 140:859–870. https://doi.org/10.1016/j.cell.2010.01.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, PL O, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938. https://doi.org/10.1073/pnas.1007028107

    Article  PubMed  PubMed Central  Google Scholar 

  6. Campbell JH, Foster CM, Vishnivetskaya T, Campbell AG, Yang ZK, Wymore A, Palumbo AV, Chesler EJ, Podar M (2012) Host genetic and environmental effects on mouse intestinal microbiota. ISME J 6:2033–2044. https://doi.org/10.1038/ismej.2012.54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wilkins LGE, Fumagalli L, Wedekind C (2016) Effects of host genetics and environment on egg-associated microbiotas in brown trout (Salmo trutta). Mol Ecol. 25:4930–4945. https://doi.org/10.1111/mec.13798

    Article  PubMed  CAS  Google Scholar 

  8. Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, PL O, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci 107:18933–18938. https://doi.org/10.1073/pnas.1007028107

    Article  PubMed  Google Scholar 

  9. Stuart YE, Veen T, Weber JN, Hanson D, Ravinet M, Lohman BK, Thompson CJ, Tasneem T, Doggett A, Izen R, Ahmed N, Barrett RDH, Hendry AP, Peichel CL, Bolnick DI (2017) mao rta aq nabasahan imo man mesenger g.gamitContrasting effects of environment and genetics generate a continuum of parallel evolution. Nat Ecol Evol 1:158. https://doi.org/10.1038/s41559-017-0158

    Article  PubMed  Google Scholar 

  10. Pigliucci M (2005) Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol 20:481–486. https://doi.org/10.1016/j.tree.2005.06.001

    Article  PubMed  Google Scholar 

  11. Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B Biol. Sci. 278:2705–2713. https://doi.org/10.1098/rspb.2011.0971

    Article  Google Scholar 

  12. Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity's impacts on diversification and speciation. Trends Ecol Evol 25:459–467. https://doi.org/10.1016/j.tree.2010.05.006

    Article  PubMed  Google Scholar 

  13. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin aS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2013) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–563. https://doi.org/10.1038/nature12820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL (2015) Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 17:72–84. https://doi.org/10.1016/j.chom.2014.11.010

    Article  PubMed  CAS  Google Scholar 

  15. Schmidt VT, Smith KF, Melvin DW, Amaral-Zettler LA (2015) Community assembly of a euryhaline fish microbiome during salinity acclimation. Mol Ecol 24:2537–2550. https://doi.org/10.1111/mec.13177

    Article  PubMed  Google Scholar 

  16. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J 8:2369–2379. https://doi.org/10.1038/ismej.2014.68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci U S A 111:E5049–E5058. https://doi.org/10.1073/pnas.1412752111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Parks BW, Nam E, Org E, Kostem E, Norheim F, Hui ST, Pan C, Civelek M, Rau CD, Bennett BJ, Mehrabian M, Ursell LK, He A, Castellani LW, Zinker B, Kirby M, Drake TA, Drevon CA, Knight R, Gargalovic P, Kirchgessner T, Eskin E, Lusis AJ (2013) Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17:141–152. https://doi.org/10.1016/j.cmet.2012.12.007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Peerakietkhajorn S, Tsukada K, Kato Y, Matsuura T, Watanabe H (2015) Symbiotic bacteria contribute to increasing the population size of a freshwater crustacean, Daphnia magna. Environ Microbiol Rep 7:364–372. https://doi.org/10.1111/1758-2229.12260

    Article  PubMed  CAS  Google Scholar 

  20. Callens M, Macke E, Muylaert K, Bossier P, Lievens B, Waud M, Decaestecker E (2016) Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna. ISME J 10:911–920. https://doi.org/10.1038/ismej.2015.166

    Article  PubMed  Google Scholar 

  21. Sison-Mangus MP, Mushegian AA, Ebert D (2015) Water fleas require microbiota for survival, growth and reproduction. ISME J 9:59–67. https://doi.org/10.1038/ismej.2014.116

    Article  PubMed  Google Scholar 

  22. Peerakietkhajorn S, Kato Y, Kasalický V, Matsuura T, Watanabe H (2015) Betaproteobacteria Limnohabitans strains increase fecundity in the crustacean Daphnia Magna: symbiotic relationship between major bacterioplankton and zooplankton in freshwater ecosystem. Environ Microbiol n/a-n/a. doi:https://doi.org/10.1111/1462-2920.12919

  23. Mushegian AA, Burcklen E, Schär TMM, Ebert D (2016) Temperature-dependent benefits of bacterial exposure in embryonic development of Daphnia magna resting eggs. J Exp Biol 219:897–904. https://doi.org/10.1242/jeb.134759

    Article  PubMed  Google Scholar 

  24. Lokmer A, Wegner KM (2015) Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J 9:670–682. https://doi.org/10.1038/ismej.2014.160

    Article  PubMed  CAS  Google Scholar 

  25. Prado SS, Hung KY, Daugherty MP, Almeida RPP (2010) Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Appl Environ Microbiol 76:1261–1266. https://doi.org/10.1128/AEM.02034-09

    Article  PubMed  CAS  Google Scholar 

  26. Yampolsky L, Schaer T, Ebert D (2014) Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc R Soc Biol Sci 281:20132744

    Article  Google Scholar 

  27. Yampolsky LY, Zeng E, Lopez J, Williams PJ, Dick KB, Colbourne JK, Pfrender ME (2014) Functional genomics of acclimation and adaptation in response to thermal stress in Daphnia. BMC Genomics 15:859. https://doi.org/10.1186/1471-2164-15-859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Klüttgen B, Dulmer U, Engels M, Ratte HT (1994) ADaM, an artificial freshwater for the culture of zooplankton. Water Res 28. https://doi.org/10.1016/0043-1354(94)90157-0

  29. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461

    Article  PubMed  CAS  Google Scholar 

  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/s0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  32. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139

    Article  PubMed  CAS  Google Scholar 

  33. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267. https://doi.org/10.1093/bioinformatics/btp636

    Article  PubMed  CAS  Google Scholar 

  34. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. https://doi.org/10.1128/AEM.01996-06

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth0510-335

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Steven MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.2–1. http://CRAN.R-project.org/package=vegan

  38. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing V, Austria. URL https://http://www.R-project.org/

  39. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Peres-Neto P, Jackson D (2001) How well do multivariate data sets match? The advantages of a procrustean superimposition approach over the mantel test. Oecologia 129:169–178. https://doi.org/10.1007/s004420100720

    Article  PubMed  Google Scholar 

  41. Freese HM, Schink B (2011) Composition and stability of the microbial community inside the digestive tract of the aquatic crustacean Daphnia magna. Microb Ecol 62:882–894. https://doi.org/10.1007/s00248-011-9886-8

    Article  PubMed  Google Scholar 

  42. Qi W, Nong G, Preston JF, Ben-Ami F, Ebert D (2009) Comparative metagenomics of Daphnia symbionts. BMC Genomics 10:172. https://doi.org/10.1186/1471-2164-10-172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Eckert EM, Pernthaler J (2014) Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME J 8:1808–1819. https://doi.org/10.1038/ismej.2014.39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wilkins LGE, Rogivue A, Schütz F, Fumagalli L, Wedekind C (2015) Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures. Sci Rep 5:17084. https://doi.org/10.1038/srep17084

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nishiguchi MK (2000) Temperature affects species distribution in symbiotic populations of Vibrio spp. Appl Environ Microbiol 66:3550–3555. https://doi.org/10.1128/AEM.66.8.3550-3555.2000.Updated

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Webster NS, Cobb RE, Negri AP (2008) Temperature thresholds for bacterial symbiosis with a sponge. ISME J 2:830–842. https://doi.org/10.1038/ismej.2008.42

    Article  PubMed  CAS  Google Scholar 

  47. Fields PD, Reisser C, Dukić M, Haag CR, Ebert D (2015) Genes mirror geography in Daphnia Magna. Mol Ecol 24:4521–4536. https://doi.org/10.1111/mec.13324

    Article  PubMed  CAS  Google Scholar 

  48. Mushegian AA, Walser J-C, Sullam KE, Ebert D The microbiota of diapause: how host–microbe associations are formed after dormancy in an aquatic crustacean. J Anim Ecol In Press. doi:https://doi.org/10.1111/1365-2656.12709

  49. Vannier N, Mony C, Bittebière A-K, Vandenkoornhuyse P (2015) Epigenetic mechanisms and microbiota as a toolbox for plant phenotypic adjustment to environment. Front Plant Sci 6:1159. https://doi.org/10.3389/fpls.2015.01159

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rook G, Bäckhed F, Levin BR, McFall-Ngai MJ, McLean AR (2017) Evolution, human-microbe interactions, and life history plasticity. Lancet 390:521–530. https://doi.org/10.1016/S0140-6736(17)30566-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jürgen Hottinger, Elodie Burcklen, Marilou Sison-Mangus, Mahendra Mariadassou, Lev Yampolsky, and members of the Ebert Group at the Zoological Institute for assistance in the laboratory and helpful discussion and feedback. We also thank the anonymous reviewers for their comments on the manuscript.

Funding

This work was supported with grants from the European Research Council, the Swiss National Science, and the Forschungsfonds of the University of Basel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Sullam.

Electronic Supplementary Material

ESM 1

(DOCX 1830 kb)

Supplementary Table 1

(XLSX 56 kb)

Supplementary Table 2

(XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullam, K.E., Pichon, S., Schaer, T.M.M. et al. The Combined Effect of Temperature and Host Clonal Line on the Microbiota of a Planktonic Crustacean. Microb Ecol 76, 506–517 (2018). https://doi.org/10.1007/s00248-017-1126-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-1126-4

Keywords

Navigation