Skip to main content

Advertisement

Log in

Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Endophytic microorganisms which are ubiquitously present in plants may colonize intracellularly or intercellularly without causing any diseases. By living within the unique chemical environment of a host plant, they produce a vast array of compounds with a wide range of biological activities. Because of this, natural products of endophytic origin have been exploited for antimicrobial, antiviral, anticancer, and antioxidant properties. Also, they can be considered to function as an efficient microbial barrier to protect plants from various pathogens. In the present study, endophytic bacterium BmB 9 with antifungal and antibacterial activity isolated from the stem tissue of Bacopa monnieri was studied for the molecular and chemical basis of its activity. PCR-based genome mining for various biosynthetic gene clusters proved the presence of surfactin, iturin, and type I polyketide synthase (PKS) genes in the isolate. The LC–MS/MS based analysis of the extract further confirmed the production of surfactin derivatives (M + H+—1008.6602, 1022.6755), iturin (M + H+—1043.5697), and fengycin (M + H+—1491.8195, 1477.8055) by the selected bacterial isolate. The 16S rDNA sequence similarity based analysis identified the isolate BmB 9 as Bacillus sp. with 100 % identity to Bacillus sp. LCF1 (KP257289).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jasim B, John Jimtha C, Jyothis M et al (2013) Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regul 71:1–11. doi:10.1007/s10725-013-9802-y

    Article  CAS  Google Scholar 

  2. Moyne A-L, Cleveland TE, Tuzun S (2004) Molecular characterization and analysis of the operon encoding the antifungal lipopeptide bacillomycin D. FEMS Microbiol Lett 234:43–49. doi:10.1016/j.femsle.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  3. Roongsawang N, Washio K, Morikawa M (2011) Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. Int J Mol Sci 12:141–172. doi:10.3390/ijms12010141

    Article  CAS  Google Scholar 

  4. Deleu M, Razafindralambo H, Popineau Y et al (1999) Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids Surfaces A Physicochem Eng Asp 152:3–10. doi:10.1016/S0927-7757(98)00627-X

    Article  CAS  Google Scholar 

  5. Peypoux F, Bonmatin J, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  6. Straus SK, Hancock REW (2006) Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim Biophys Acta - Biomembr 1758:1215–1223. doi:10.1016/j.bbamem.2006.02.009

    Article  CAS  Google Scholar 

  7. Jasim B, Anisha C, Rohini S et al (2013) Phenazine carboxylic acid production and rhizome protective effect of endophytic Pseudomonas aeruginosa isolated from Zingiber officinale. World J Microbiol Biotechnol. doi:10.1007/s11274-013-1582-z

    PubMed  Google Scholar 

  8. Jasim B, Jimtha John C, Shimil V et al (2014) Studies on the factors modulating indole-3-acetic acid production in endophytic bacterial isolates from Piper nigrum and molecular analysis of ipdc gene. J Appl Microbiol 117:786–799. doi:10.1111/jam.12569

    Article  CAS  PubMed  Google Scholar 

  9. Thomas R, Nair A, KR S et al (2014) Antibacterial activity and synergistic effect of biosynthesized AgNPs with antibiotics against multidrug-resistant biofilm-forming coagulase-negative staphylococci isolated from clinical samples. Appl Biochem Biotechnol 173:449–460. doi:10.1007/s12010-014-0852-z

    Article  CAS  PubMed  Google Scholar 

  10. Jasim B, Anish M, Shimil V et al (2015) Studies on plant growth promoting properties of fruit-associated bacteria from Elettaria cardamomum and molecular analysis of ACC deaminase gene. Appl Biochem Biotechnol 177:175–189. doi:10.1007/s12010-015-1736-6

    Article  CAS  PubMed  Google Scholar 

  11. Long HH, Schmidt DD, Baldwin IT (2008) Native bacterial endophytes promote host growth in a species-specific manner; phytohormone manipulations do not result in common growth responses. PLoS One 3:e2702. doi:10.1371/journal.pone.0002702

    Article  PubMed  PubMed Central  Google Scholar 

  12. Goryluk A, Rekosz-Burlaga H, Błaszczyk M (2009) Isolation and characterization of bacterial endophytes of Chelidonium majus L. Polish J Microbiol 58:355–361

    CAS  Google Scholar 

  13. Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170:3499–3508

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Kempf H, Wolf G (1989) Erwinia herbicola as a bio-control agent of Fusarium culmorum and Puccinia recondita f. sp. Tritici on wheat. Phytopathology 79:990–994

    Article  Google Scholar 

  15. Steller S, Vollenbroich D, Leenders F et al (1999) Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Chem Biol 6:31–41. doi:10.1016/S1074-5521(99)80018-0

    Article  CAS  PubMed  Google Scholar 

  16. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857. doi:10.1111/j.1365-2958.2005.04587.x

    Article  CAS  PubMed  Google Scholar 

  17. Cho S-J, Lee SK, Cha BJ et al (2003) Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol Lett 223:47–51

    Article  CAS  PubMed  Google Scholar 

  18. Wei Y-H, Wang L-C, Chen W-C, Chen S-Y (2010) Production and characterization of fengycin by indigenous Bacillus subtilis F29-3 originating from a potato farm. Int J Mol Sci 11:4526–4538. doi:10.3390/ijms11114526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang J-S, Zhao F, Gao H et al (2010) Characterization and online detection of surfactin isomers based on HPLC-MS(n) analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS-induced macrophages. Mar Drugs 8:2605–2618. doi:10.3390/md8102605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oehrle N, Karr D, Kremer R, Emerich D (2000) Enhanced attachment of Bradyrhizobium japonicum to soybean through reduced root colonization of internally seedborne microorganisms. Can J Microbiol 46:600–606

    Article  CAS  PubMed  Google Scholar 

  21. Rajendran G, Sing F, Desai AJ, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550. doi:10.1016/j.biortech.2007.06.057

    Article  CAS  PubMed  Google Scholar 

  22. Selvakumar G, Kundu S, Gupta A et al (2008) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139. doi:10.1007/s00284-007-9062-z

    Article  CAS  PubMed  Google Scholar 

  23. Jasim B, Geethu PR, Mathew J, Radhakrishnan EK (2015) Effect of endophytic Bacillus sp. from selected medicinal plants on growth promotion and diosgenin production in Trigonella foenum-graecum. Plant Cell, Tissue Organ Cult 122:565–572. doi:10.1007/s11240-015-0788-1

    Article  CAS  Google Scholar 

  24. Korzybski T, Kowszyk-Gifinder Z, Kurytowicz W (1978) Antibiotics: origin, nature, and properties. American Society for Microbiology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  25. Naruse N, Tenmyo O, Kobaru S (1990) Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemical properties, structure and biological activity. J Antibiot (Tokyo) 43:267–280

    Article  CAS  Google Scholar 

  26. Munimbazi B (1998) Isolation and partial characterization of antifungal metabolites of Bacillus pumilus. J Appl Microbiol 84:959–968. doi:10.1046/j.1365-2672.1998.00431.x

    Article  CAS  PubMed  Google Scholar 

  27. Pabel CT, Vater J, Wilde C et al (2003) Antimicrobial activities and matrix-assisted laser desorption/ionization mass spectrometry of Bacillus isolates from the marine sponge Aplysina aerophoba. Mar Biotechnol 5:424–434. doi:10.1007/s10126-002-0088-8

    Article  CAS  PubMed  Google Scholar 

  28. Tamehiro N, Okamoto-Hosoya Y, Okamoto S et al (2002) Bacilysocin, a novel phospholipid antibiotic produced by Bacillus subtilis 168. Antimicrob Agents Chemother 46:315–320. doi:10.1128/AAC.46.2.315-320.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zheng G, Slavik MF (1999) Isolation, partial purification and characterization of a bacteriocin produced by a newly isolated Bacillus subtilis strain. Lett Appl Microbiol 28:363–367. doi:10.1046/j.1365-2672.1999.00545.x

    Article  CAS  PubMed  Google Scholar 

  30. Arrebola E, Jacobs R, Korsten L (2010) Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395. doi:10.1111/j.1365-2672.2009.04438.x

    Article  CAS  PubMed  Google Scholar 

  31. Hsieh F-C, Lin T-C, Meng M, Kao S-S (2008) Comparing methods for identifying bacillus strains capable of producing the antifungal lipopeptide iturin A. Curr Microbiol 56:1–5. doi:10.1007/s00284-007-9003-x

    Article  CAS  PubMed  Google Scholar 

  32. Yu GY, Sinclair JB, Hartman GL, Bertagnolli BL (2002) Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biol Biochem 34:955–963. doi:10.1016/S0038-0717(02)00027-5

    Article  CAS  Google Scholar 

  33. Koumoutsi A, Chen X-H, Henne A et al (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096. doi:10.1128/JB.186.4.1084-1096.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Romero D, de Vicente A, Rakotoaly RH et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–40. doi:10.1094/MPMI-20-4-0430

    Article  CAS  PubMed  Google Scholar 

  35. Mounia Y-A, Noreddine KC, Laid D et al (2014) Antifungal activity and bioactive compounds produced by Bacillus mojavensis and Bacillus subtilis. African J Microbiol Res 8:476–484. doi:10.5897/AJMR2013.6327

    Article  Google Scholar 

  36. Snook ME, Mitchell T, Hinton DM, Bacon CW (2009) Isolation and characterization of Leu7-surfactin from the endophytic bacterium Bacillus mojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J Agric Food Chem 57:4287–4292. doi:10.1021/jf900164h

    Article  CAS  PubMed  Google Scholar 

  37. Bacon CW, Hinton DM, Mitchell TR et al (2012) Characterization of endophytic strains of Bacillus mojavensis and their production of surfactin isomers. Biol Control 62:1–9. doi:10.1016/j.biocontrol.2012.03.006

    Article  CAS  Google Scholar 

  38. Marrone P (2002) An effective biofungicide with novel modes of action. Pestic outlook 13:193–194

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by Department of Biotechnology (DBT), Government of India under DBT-RGYI and DBT-MSUB support scheme (BT/PR4800/INF/22/152/2012 Dtd 23.03.2012) and Kerala State Council Science Technology and Environment (KSCSTE) under KSCSTE-SARD Programme and KSCSTE-SRS Major Project. The authors also acknowledge Prof. C. T. Aravindakumar, Hon. Director and Mr. Dineep D., Scientific Assistant of the Inter-University Instrumentation Centre, Mahatma Gandhi University, Kottayam for the help and support in the LC-MS/MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Radhakrishnan.

Ethics declarations

Ethical Standards

We have not used any animal models for the experiments, thus, an ethical committee clearance was not required.

Conflict of Interest

The authors declare no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 8889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, B., Sreelakshmi, K.S., Mathew, J. et al. Surfactin, Iturin, and Fengycin Biosynthesis by Endophytic Bacillus sp. from Bacopa monnieri . Microb Ecol 72, 106–119 (2016). https://doi.org/10.1007/s00248-016-0753-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0753-5

Keywords

Navigation