Skip to main content
Log in

Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum

  • Fungal Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study demonstrates volatile organic compounds (VOCs) production as one of the defense mechanisms of the antagonistic endophyte Nodulisporium sp. GS4d2II1a, and the volatile changes in two times of the fungal growth; and, as result of its intra and interspecific interactions with the plant pathogen Pythium aphanidermatum. The antifungal activity of the volatile and diffusible metabolites was evaluated by means of three types of antagonism bioassays and by organic extract agar dilution. VOCs were obtained by gas chromatography coupled to mass spectrometry from 3- and 5-day Nodulisporium sp. cultures, as well as from its interspecific in vitro antagonistic interaction with the oomycete P. aphanidermatum, and its intraspecific Nodulisporium sp.–Nodulisporium sp. interaction. The GS4d2II1a strain completely inhibited the growth of two fungi and seven oomycetes by replacing their mycelia in simple antagonism bioassays and by producing in vitro volatile and diffusible metabolites that acted synergistically in multiple antagonism bioassays. Additionally, VOCs inhibited the growth of three oomycetes and one fungus in antagonism bioassays using divided plates. A total of 70 VOCs were detected, mainly including mono and sesquiterpenes, especially eucalyptol and limonene. Multiple correspondence analysis revealed four different volatile profiles, showing that volatiles changed with the fungus age and its intra and interspecific interactions. The metabolites produced by Nodulisporium sp. GS4d2II1a could be useful for biological control of fungal and oomycetes plant pathogens of economically important crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26:73–83. doi:10.1016/j.fbr.2012.07.001

    Article  Google Scholar 

  2. Yu H, Zhang L, Li L et al (2010) Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol Res 165:437–49. doi:10.1016/j.micres.2009.11.009

    Article  CAS  PubMed  Google Scholar 

  3. Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32:363–73. doi:10.3109/07388551.2011.651429

    Article  PubMed  Google Scholar 

  4. Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703. doi:10.1007/s10886-012-0135-5

    Article  CAS  PubMed  Google Scholar 

  5. Spraker JE, Jewell K, Roze LV et al (2014) A volatile relationship: profiling an inter-kingdom dialogue between two plant pathogens, Ralstonia solanacearum and Aspergillus flavus. J Chem Ecol 40:502–513. doi:10.1007/s10886-014-0432-2

    Article  CAS  PubMed  Google Scholar 

  6. Gams W, Diederich P, Põldmaa K (2004) Fungicolous Fungi. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, MA, pp 343–392

    Chapter  Google Scholar 

  7. Gao F, Dai C, Liu X (2010) Mechanisms of fungal endophytes in plant protection against pathogens. African J Microbiol Res 4:1346–1351

    Google Scholar 

  8. Stinson M, Ezra D, Hess WM et al (2003) An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165:913–922. doi:10.1016/S0168-9452(03)00299-1

    Article  CAS  Google Scholar 

  9. Strobel G (2011) Muscodor species—endophytes with biological promise. Phytochem Rev 10:165–172. doi:10.1007/s11101-010-9163-3

    Article  CAS  Google Scholar 

  10. Boddy L (2000) Interspecific combative interactions between wood-decaying basidiomycetes. FEMS Microbiol Ecol 31:185–194. doi:10.1111/j.1574-6941.2000.tb00683.x

    Article  CAS  PubMed  Google Scholar 

  11. Rotheray TD, Chancellor M, Jones TH, Boddy L (2011) Grazing by collembola affects the outcome of interspecific mycelial interactions of cord-forming basidiomycetes. Fungal Ecol 4:42–55. doi:10.1016/j.funeco.2010.09.001

    Article  Google Scholar 

  12. Evans J, Eyre C, Rogers HJ et al (2008) Changes in volatile production during interspecific interactions between four wood rotting fungi growing in artificial media. Fungal Ecol 1:57–68. doi:10.1016/j.funeco.2008.06.001

    Article  Google Scholar 

  13. Minerdi D, Bossi S, Gullino ML, Garibaldi A (2009) Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11:844–854. doi:10.1111/j.1462-2920.2008.01805.x

    Article  CAS  PubMed  Google Scholar 

  14. Hynes J, Müller CT, Jones TH, Boddy L (2007) Changes in volatile production during the course of fungal mycelial interactions between Hypholoma fasciculare and Resinicium bicolor. J Chem Ecol 33:43–57. doi:10.1007/s10886-006-9209-6

    Article  CAS  PubMed  Google Scholar 

  15. Park M-S, Ahn J-Y, Choi G-J et al (2010) Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol J 26:253–259. doi:10.5423/PPJ.2010.26.3.253

    Article  Google Scholar 

  16. Tomsheck AR, Strobel G, Booth E et al (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1,8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60:903–14. doi:10.1007/s00248-010-9759-6

    Article  CAS  PubMed  Google Scholar 

  17. Mends MT, Yu E, Strobel GA et al (2012) An endophytic Nodulisporium sp. producing volatile organic compounds having bioactivity and fuel potential. J Pet Environ Biotechnol 03:117. doi:10.4172/2157-7463.1000117

    CAS  Google Scholar 

  18. Riyaz-Ul-Hassan S, Strobel G, Geary B, Sears J (2013) An endophytic Nodulisporium sp. from Central America producing volatile organic compounds with both biological and fuel potential. J Microbiol Biotechnol 23:29–35

    Article  CAS  PubMed  Google Scholar 

  19. Suwannarach N, Kumla J, Bussaban B et al (2013) Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit. Crop Prot 45:63–70. doi:10.1016/j.cropro.2012.11.015

    Article  CAS  Google Scholar 

  20. Nigg J, Strobel G, Knighton WB et al (2014) Functionalized para-substituted benzenes as 1,8-cineole production modulators in an endophytic Nodulisporium species. Microbiology 160:1772–1782. doi:10.1099/mic.0.079756-0

    Article  CAS  PubMed  Google Scholar 

  21. Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376. doi:10.2307/3760568

    Article  Google Scholar 

  22. Ellis MB (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England

    Google Scholar 

  23. Ju Y-M, Rogers JD (1996) A revision of the genus Hypoxylon. APS, St. Paul, MI

    Google Scholar 

  24. Kornerup A, Wanscher JH (1967) Methuen handbook of colour, 3dth edn. Methuen E, London

    Google Scholar 

  25. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118. doi:10.1111/J.1365-294x.1993.Tb00005.X

    Article  CAS  PubMed  Google Scholar 

  26. Larena I, Salazar O, González V et al (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75:187–194. doi:10.1016/S0168-1656(99)00154-6

    Article  CAS  PubMed  Google Scholar 

  27. Akins RA, Lambowitz AM (1985) General method for cloning Neurospora crassa nuclear genes by complementation of mutants. Mol Cell Biol 5:2272–2278. doi:10.1128/MCB.5.9.2272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. doi:10.1186/1471-2180-5-28

    PubMed Central  PubMed  Google Scholar 

  29. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–10. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  30. Macías-Rubalcava ML, Hernández-Bautista BE, Jiménez-Estrada M et al (2008) Naphthoquinone spiroketal with allelochemical activity from the newly discovered endophytic fungus Edenia gomezpompae. Phytochemistry 69:1185–1196. doi:10.1016/j.phytochem.2007.12.006

    Article  PubMed  Google Scholar 

  31. Macías-Rubalcava ML, Hernández-bautista BE, Oropeza F et al (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36:1122–1131. doi:10.1007/s10886-010-9848-5

    Article  PubMed  Google Scholar 

  32. Meléndez-González C, Murià-González MJ, Anaya AL et al (2015) Acremoxanthone E, a novel member of heterodimeric polyketides with a bicyclo[3.2.2]nonene ring, produced by Acremonium camptosporum W. GAMS (Clavicipitaceae) endophytic fungus. Chem Biodivers 12:133–147

    Article  PubMed  Google Scholar 

  33. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy, 4th edition, 4th ed. Biochem Syst Ecol. doi:10.1016/0305-1978(96)83708-2

    Google Scholar 

  34. Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn diagrams. In: http://bioinfogp.cnb.csic.es/tools/venny/index.html

  35. Costa PS, Santos NC, Cunha P, et al. (2013) The use of Multiple Correspondence Analysis to explore associations between categories of qualitative variables in healthy ageing. J Aging Res 1–12. doi: 10.1155/2013/302163

  36. Semmar N (2013) Two computational simplex approaches to graphical highlighting metabolic phenotypes and their functional origins: Correspondence Analysis and Weighted Metabolic Profiles Analysis. Metabolomics coming age with its Technol. Divers., 1st ed. Elsevier, pp 441–492

  37. Kuhnert E, Fournier J, Peršoh D et al (2014) New Hypoxylon species from Martinique and new evidence on the molecular phylogeny of Hypoxylon based on ITS rDNA and β-tubulin data. Fungal Divers 64:181–203. doi:10.1007/s13225-013-0264-3

    Article  Google Scholar 

  38. Mulyaningsih S, Sporer F, Zimmermann S et al (2010) Phytomedicine synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Eur J Integr Med 17:1061–1066. doi:10.1016/j.phymed.2010.06.018

    CAS  Google Scholar 

  39. Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943–2950. doi:10.1099/00221287-147-11-2943

    Article  CAS  PubMed  Google Scholar 

  40. Bertrand S, Bohni N, Schnee S et al (2014) Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol Adv 32:1180–1204. doi:10.1016/j.biotechadv.2014.03.001

    Article  CAS  PubMed  Google Scholar 

  41. Müller MEH, Steier I, Köppen R et al (2012) Cocultivation of phytopathogenic Fusarium and Alternaria strains affects fungal growth and mycotoxin production. J Appl Microbiol 113:874–887. doi:10.1111/j.1365-2672.2012.05388.x

    Article  PubMed  Google Scholar 

  42. Minerdi D, Bossi S, Maffei ME et al (2011) Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 76:342–351. doi:10.1111/j.1574-6941.2011.01051.x

    Article  CAS  PubMed  Google Scholar 

  43. Nikolić B, Mitić-Ćulafić D, Vuković-Gačić B, Knežević-Vukčević J (2011) Modulation of genotoxicity and DNA repair by plant monoterpenes camphor, eucalyptol and thujone in Escherichia coli and mammalian cells. Food Chem Toxicol 49:2035–45. doi:10.1016/j.fct.2011.05.015

    Article  PubMed  Google Scholar 

  44. Vilela GR, de Almeida GS, D’Arce MABR et al (2009) Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J Stored Prod Res 45:108–111. doi:10.1016/j.jspr.2008.10.006

    Article  CAS  Google Scholar 

  45. Stojković D, Soković M, Glamočlija J et al (2011) Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem 128:1017–1022. doi:10.1016/j.foodchem.2011.04.007

    Article  Google Scholar 

  46. Yamagiwa Y, Inagaki Y, Ichinose Y et al (2011) Talaromyces wortmannii FS2 emits β-caryophyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol 77:336–341. doi:10.1007/s10327-011-0340-z

    Article  CAS  Google Scholar 

  47. Li Q, Ning P, Zheng L et al (2010) Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol Technol 58:157–165. doi:10.1016/j.postharvbio.2010.06.003

    Article  CAS  Google Scholar 

  48. Strobel G, Singh SK, Riyaz-Ul-Hassan S et al (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320:87–94. doi:10.1111/j.1574-6968.2011.02297.x

    Article  CAS  PubMed  Google Scholar 

  49. Müller A, Faubert P, Hagen M et al (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33. doi:10.1016/j.fgb.2013.02.005

    Article  PubMed  Google Scholar 

  50. Singh P, Shukla R, Prakash B et al (2010) Chemical profile, antifungal, antiaflatoxigenic and antioxidant activity of Citrus maxima Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. Food Chem Toxicol 48:1734–1740. doi:10.1016/j.fct.2010.04.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the CONACyT grant 179194. Rosa E. Sánchez-Fernández is a doctoral student from the Posgrado en Ciencias Biomédicas, Instituto de Química, UNAM. She was recipient of a doctoral fellowship from CONACyT, Mexico. We wish to thank to M. Sc. Allan Espinosa Gómez from Instituto de Investigaciones Biomédicas, UNAM, for his help with the molecular identification; to PhD. Bertha Tlapal Bolaños and PhD. Olga Gómez from Instituto de Fitosanidad, Colegio de Postgraduados, Montecillo, Estado de Mexico, for the plant pathogens donation used in the bioassays; to Gonzalo Roque Flores, Instituto de Química, UNAM, for his support with the images edition; to M. Sc. Rebeca Martínez from Instituto de Biología, UNAM, for her support with the brightfield photomicrographs; to M. Sc. Ernesto L. Guevara form Facultad de Medicina, UNAM, for his support in the article revision and especially to M. Sc. Rafael Ibarra Contreras from Facultad de Química, UNAM, for language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martha Lydia Macías-Rubalcava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Fernández, R.E., Diaz, D., Duarte, G. et al. Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum . Microb Ecol 71, 347–364 (2016). https://doi.org/10.1007/s00248-015-0679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0679-3

Keywords

Navigation