Skip to main content
Log in

Survival and Metabolic Activity of Pediocin Producer Pediococcus acidilactici UL5: Its Impact on Intestinal Microbiota and Listeria monocytogenes in a Model of the Human Terminal Ileum

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Pediococcus acidilactici UL5 is a promising probiotic candidate due to its high survival rate under gastric and duodenal conditions and to its ability to produce the antilisterial bacteriocin pediocin PA-1. Its survival, metabolic activity, and impact on Listeria monocytogenes in a continuous stirred tank reactor containing immobilized human intestinal microbiota were studied over a period of 32 days of feeding a nutrient medium simulating ileal chyme. The impact of P. acidilactici UL5 on different bacterial groups of intestinal origin as well as its survival and its impact on L. monocytogenes were quantified using quantitative polymerase chain reaction coupling with propidium monoazide (PMA-qPCR), which was shown to detect and quantify viable bacteria only. P. acidilactici UL5 and its non-pediocin-producing mutant had no effect on the microbiota, but the producing strain induced an increase in the production of acetic and propionic acids. P. acidilactici survived but appeared to be a poor competitor with intestinal microbiota, dropping by 1.3 and 2.8 log10 after 8 h of fermentation to 104 colony-forming units (cfu) mL−1. A 1.64 log but non-significant reduction of Listeria was observed when P. acidilactici UL5 was added at 108 cfu mL−1. P. acidilactici UL5 isolated from the reactor after 3 days was still able to produce the active bacteriocin. These data demonstrate that P. acidilactici UL5 is capable of surviving transit through the ileum without losing its ability to produce pediocin PA-1 but seems to not be enough competitive with the great diversity of organisms found in the ileum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pineiro M, Stanton C (2007) Probiotic bacteria: legislative framework— requirements to evidence basis. J Nutr 137(3):850S–853S

    CAS  PubMed  Google Scholar 

  2. Chaucheyras-Durand F, Durand H (2010) Probiotics in animal nutrition and health. Benefic Microbes 1(1):3–9. doi:10.3920/BM2008.1002

    Article  CAS  Google Scholar 

  3. Gaggìa F, Mattarelli P, Biavati B (2010) Probiotics and prebiotics in animal feeding for safe food production. Int J Food Microbiol 141:S15–S28. doi:10.1016/j.ijfoodmicro.2010.02.031

    Article  PubMed  Google Scholar 

  4. Crooks N, Snaith C, Webster D, Gao F, Hawkey P (2012) Clinical review: probiotics in critical care. Crit Care 16(6):237

    Article  PubMed Central  Google Scholar 

  5. Behnsen J, Deriu E, Sassone-Corsi M, Raffatellu M (2013) Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med 3 (3). doi:10.1101/cshperspect.a010074

  6. Gogineni V, Morrow L, Malesker M (2013) Probiotics: mechanisms of action and clinical applications. J Prob Health 1(101):2

    Google Scholar 

  7. Hammami R, Fernandez B, Lacroix C, Fliss I (2013) Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 70(16):2947–2967. doi:10.1007/s00018-012-1202-3

    Article  CAS  PubMed  Google Scholar 

  8. Fliss I, Hammami R, Le Lay C (2011) Biological control of human digestive microbiota using antimicrobial cultures and bacteriocins. In: Lacroix C (ed) Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead Publishing in Food Science Technology and Nutrition, Cambridge, pp 240-263

  9. Corr SC, Hill C, Gahan CG (2009) Understanding the mechanisms by which probiotics inhibit gastrointestinal pathogens. Adv Food Nutr Res 56:1–15. doi:10.1016/s1043-4526(08)00601-3

    Article  CAS  PubMed  Google Scholar 

  10. Fliss I, Hammami R, Le Lay C (2011) Biological control of human digestive microbiota using antimicrobial cultures and bacteriocins. Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation. Woodhead Publishing, Ltd., Cambridge, pp 240–263

    Book  Google Scholar 

  11. Dobson A, Cotter PD, Ross RP, Hill C (2012) Bacteriocin production: a probiotic trait? Appl Environ Microbiol 78(1):1–6. doi:10.1128/aem.05576-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Connor PM, Ross RP, Hill C, Cotter PD (2015) Antimicrobial antagonists against food pathogens: a bacteriocin perspective. Curr Opin Food Sci 2:51–57

    Article  Google Scholar 

  13. Hatakka K, Saxelin M (2008) Probiotics in intestinal and non-intestinal infectious diseases - clinical evidence. Curr Pharm Des 14(14):1351–1367

    Article  CAS  PubMed  Google Scholar 

  14. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev 59(2):171–200

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    Article  CAS  PubMed  Google Scholar 

  16. Klostermann K, Crispie F, Flynn J, Meaney WJ, Paul Ross R, Hill C (2010) Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. J Dairy Res 77(02):231–238. doi:10.1017/S0022029909990239

    Article  CAS  PubMed  Google Scholar 

  17. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CGM (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci 104(18):7617–7621. doi:10.1073/pnas.0700440104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Millette M, Cornut G, Dupont C, Shareck F, Archambault D, Lacroix M (2008) Capacity of human nisin- and pediocin-producing lactic acid bacteria to reduce intestinal colonization by vancomycin-resistant enterococci. Appl Environ Microbiol 74(7):1997–2003. doi:10.1128/aem.02150-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dobson A, Crispie F, Rea MC, O’Sullivan O, Casey PG, Lawlor PG, Cotter PD, Ross P, Gardiner GE, Hill C (2011) Fate and efficacy of lacticin 3147-producing Lactococcus lactis in the mammalian gastrointestinal tract. FEMS Microbiol Ecol 76(3):602–614. doi:10.1111/j.1574-6941.2011.01069.x

    Article  CAS  PubMed  Google Scholar 

  20. Rea MC, Clayton E, O’Connor PM, Shanahan F, Kiely B, Ross RP, Hill C (2007) Antimicrobial activity of lacticin 3,147 against clinical Clostridium difficile strains. J Med Microbiol 56(Pt 7):940–946. doi:10.1099/jmm.0.47085-0

    Article  CAS  PubMed  Google Scholar 

  21. Rea MC, Dobson A, O’Sullivan O, Crispie F, Fouhy F, Cotter PD, Shanahan F, Kiely B, Hill C, Ross RP (2010) Effect of broad- and narrow-spectrum antimicrobials on Clostridium difficile and microbial diversity in a model of the distal colon. Proc Natl Acad Sci. doi:10.1073/pnas.1001224107

    Google Scholar 

  22. Le Blay G, Lacroix C, Zihler A, Fliss I (2007) In vitro inhibition activity of nisin A, nisin Z, pediocin PA-1 and antibiotics against common intestinal bacteria. Lett Appl Microbiol 45(3):252–257

    Article  PubMed  Google Scholar 

  23. Le Blay G, Hammami R, Lacroix C, Fliss I (2012) Stability and inhibitory activity of pediocin PA-1 against Listeria sp. in simulated physiological conditions of the human terminal ileum. Probiotics & Antimicro Prot 4(4):250–258. doi:10.1007/s12602-012-9111-1

    Article  CAS  Google Scholar 

  24. Minekus M, Marteau P, Havenaar R (1995) Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA (Alternatives to laboratory animals) 23:197

    Google Scholar 

  25. Fernandez B, Hammami R, Savard P, Jean J, Fliss I (2014) Pediococcus acidilactici UL5 and Lactococcus lactis ATCC 11454 are able to survive and express their bacteriocin genes under simulated gastrointestinal conditions. J Appl Microbiol 116(3):677–688. doi:10.1111/jam.12391

    Article  CAS  PubMed  Google Scholar 

  26. Fernandez B, Le Lay C, Jean J, Fliss I (2013) Growth, acid production and bacteriocin production by probiotic candidates under simulated colonic conditions. J Appl Microbiol 114(3):877–885. doi:10.1111/jam.12081

    Article  CAS  PubMed  Google Scholar 

  27. Dabour N, Zihler A, Kheadr E, Lacroix C, Fliss I (2009) In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int J Food Microbiol 133(3):225–233. doi:10.1016/j.ijfoodmicro.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  28. Daba H, Pandian S, Gosselin JF, Simard RE, Huang J, Lacroix C (1991) Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides. Appl Environ Microbiol 57(12):3450–3455

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cinquin C, Le Blay G, Fliss I, Lacroix C (2004) Immobilization of infant fecal microbiota and utilization in an in vitro colonic fermentation model. Microb Ecol 48(1):128–138. doi:10.1007/s00248-003-2022-7

    Article  CAS  PubMed  Google Scholar 

  30. Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35(2):180–187. doi:10.1007/s002489900072

    Article  CAS  PubMed  Google Scholar 

  31. Mallory A, Kern FJ, Smith J, Savage D (1973) Patterns of bile acids and microflora in the human small intestine. Gastroenterology 64(1):34

    CAS  PubMed  Google Scholar 

  32. Macfarlane GT, Cummings JH, Macfarlane S, Gibson GR (1989) Influence of retention time on degradation of pancreatic enzymes by human colonic bacteria grown in a 3-stage continuous culture system. J Appl Microbiol 67(5):521–527. doi:10.1111/j.1365-2672.1989.tb02524.x

    CAS  Google Scholar 

  33. Gibson GR, Wang X (1994) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol Lett 118(1–2):121–127

    Article  CAS  PubMed  Google Scholar 

  34. Fallingborg J (1999) Intraluminal pH of the human gastrointestinal tract. Dan Med Bull 46(3):183–196

    CAS  PubMed  Google Scholar 

  35. Fujimoto J, Tanigawa K, Kudo Y, Makino H, Watanabe K (2011) Identification and quantification of viable Bifidobacterium breve strain Yakult in human faeces by using strain-specific primers and propidium monoazide. J Appl Microbiol 110(1):209–217. doi:10.1111/j.1365-2672.2010.04873.x

    Article  CAS  PubMed  Google Scholar 

  36. Ahlroos T, Tynkkynen S (2009) Quantitative strain-specific detection of Lactobacillus rhamnosus GG in human faecal samples by real-time PCR. J Appl Microbiol 106(2):506–514. doi:10.1111/j.1365-2672.2008.04018.x

    Article  CAS  PubMed  Google Scholar 

  37. van Netten P, Perales I, van de Moosdijk A, Curtis GDW, Mossel DAA (1989) Liquid and solid selective differential media for the detection and enumeration of L. monocytogenes and other Listeria spp. Int J Food Microbiol 8(4):299–316. doi:10.1016/0168-1605(89)90001-9

    Article  PubMed  Google Scholar 

  38. Hough AJ, Harbison SA, Savill MG, Melton LD, Fletcher G (2002) Rapid enumeration of Listeria monocytogenes in artificially contaminated cabbage using real-time polymerase chain reaction. J Food Prot 65(8):1329–1332

    PubMed  Google Scholar 

  39. Mora D, Fortina MG, Parini C, Manachini PL (1997) Identification of Pediococcus acidilactici and Pediococcus pentosaceus based on 16S rRNA and ldhD gene-targeted multiplex PCR analysis. FEMS Microbiol Lett 151(2):231–236. doi:10.1111/j.1574-6968.1997.tb12575.x

    Article  CAS  PubMed  Google Scholar 

  40. Simpson PJ, Fitzgerald GF, Stanton C, Ross RP (2006) Enumeration and identification of pediococci in powder-based products using selective media and rapid PFGE. J Microbiol Methods 64(1):120–125. doi:10.1016/j.mimet.2005.04.019

    Article  CAS  PubMed  Google Scholar 

  41. Wolf CE, Gibbons WR (1996) Improved method for quantification of the bacteriocin nisin. J Appl Bacteriol 80(4):453–457

    Article  CAS  PubMed  Google Scholar 

  42. Gürtler V, Stanisich VA (1996) New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142(Pt 1):3–16

    Article  PubMed  Google Scholar 

  43. Zheng D, Alm EW, Stahl DA, Raskin L (1996) Characterization of universal small-subunit rRNA hybridization probes for quantitative molecular microbial ecology studies. Appl Environ Microbiol 62(12):4504–4513

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Doyon G, Gaudreau G, St-Gelais D, Beaulieu Y, Randall CJ (1991) Simultaneous HPLC determination of organic acids, sugars and alcohols. Can Inst Food Sci Technol J 24(1–2):87–94. doi:10.1016/S0315-5463(91)70025-4

    Article  CAS  Google Scholar 

  45. Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y (2005) Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J Med Microbiol 54(11):1093–1101. doi:10.1099/jmm.0.45935-0

    Article  CAS  PubMed  Google Scholar 

  46. Marteau P, Pochart P, Doré J, Béra-Maillet C, Bernalier A, Corthier G (2001) Comparative study of bacterial groups within the human cecal and fecal microbiota. Appl Environ Microbiol 67(10):4939–4942. doi:10.1128/aem.67.10.4939-4942.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Verthé K, Possemiers S, Boon N, Vaneechoutte M, Verstraete W (2004) Stability and activity of an Enterobacter aerogenes-specific bacteriophage under simulated gastro-intestinal conditions. Appl Microbiol Biotechnol 65(4):465–472. doi:10.1007/s00253-004-1585-7

    Article  PubMed  Google Scholar 

  48. Conlan JW (1997) Neutrophils and tumour necrosis factor-α are important for controlling early gastrointestinal stages of experimental murine listeriosis. J Med Microbiol 46(3):239–250. doi:10.1099/00222615-46-3-239

    Article  CAS  PubMed  Google Scholar 

  49. Cleusix V, Lacroix C, Vollenweider S, Le Blay G (2008) Glycerol induces reuterin production and decreases Escherichia coli population in an in vitro model of colonic fermentation with immobilized human feces. FEMS Microbiol Ecol 63(1):56–64. doi:10.1111/j.1574-6941.2007.00412.x

    Article  CAS  PubMed  Google Scholar 

  50. Cinquin C, Le Blay G, Fliss I, Lacroix C (2006) New three-stage in vitro model for infant colonic fermentation with immobilized fecal microbiota. FEMS Microbiol Ecol 57(2):324–336. doi:10.1111/j.1574-6941.2006.00117.x

    Article  CAS  PubMed  Google Scholar 

  51. Wang X, Heazlewood SP, Krause DO, Florin THJ (2003) Molecular characterization of the microbial species that colonize human ileal and colonic mucosa by using 16S rDNA sequence analysis. J Appl Microbiol 95(3):508–520

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed S, Macfarlane GT, Fite A, McBain AJ, Gilbert P, Macfarlane S (2007) Mucosa-associated bacterial diversity in relation to human terminal ileum and colonic biopsy samples. Appl Environ Microbiol 73(22):7435–7442. doi:10.1128/aem.01143-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bernbom N, Jelle B, Brogren C-H, Vogensen FK, Nørrung B, Licht TR (2009) Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota. Int J Food Microbiol 130(3):251–257. doi:10.1016/j.ijfoodmicro.2009.02.003

    Article  CAS  PubMed  Google Scholar 

  54. Riboulet-Bisson E, Sturme MHJ, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, Lawlor PG, O’Toole PW, Ross RP (2012) Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS ONE 7(2):e31113. doi:10.1371/journal.pone.0031113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota and host energy metabolism. J Lipid Res. doi:10.1194/jlr.R036012

    Google Scholar 

  56. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8(6):1323–1335. doi:10.1038/ismej.2014.14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Huang J, Lacroix C, Daba H, Simard RE (1996) Pediocin 5 production and plasmid stability during continuous free and immobilized cell cultures of Pediococcus acidilactici UL5. J Appl Bacteriol 80(6):635–644. doi:10.1111/j.1365-2672.1996.tb03268.x

    Article  CAS  PubMed  Google Scholar 

  59. Kheadr E, Zihler A, Dabour N, Lacroix C, Le Blay G, Fliss I (2010) Study of the physicochemical and biological stability of pediocin PA-1 in the upper gastrointestinal tract conditions using a dynamic in vitro model. J Appl Microbiol 109(1):54–64. doi:10.1111/j.1365-2672.2009.04644.x

    CAS  PubMed  Google Scholar 

  60. Salvucci E, Saavedra L, Hebert EM, Haro C, Sesma F (2012) Enterocin CRL35 inhibits Listeria monocytogenes in a murine model. Foodborne Pathog Dis 9(1):68–74

    Article  CAS  PubMed  Google Scholar 

  61. Zihler A, Gagnon M, Chassard C, Hegland A, Stevens MJA, Braegger CP, Lacroix C (2010) Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology 156(11):3342–3353. doi:10.1099/mic.0.042036-0

    Article  CAS  PubMed  Google Scholar 

  62. Zihler A, Gagnon M, Chassard C, Lacroix C (2011) Protective effect of probiotics on Salmonella infectivity assessed with combined in vitro gut fermentation-cellular models. BMC Microbiol 11(1):264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mandal V, Sen S, Mandal N (2009) Effect of prebiotics on bacteriocin production and cholesterol lowering activity of Pediococcus acidilactici LAB 5. World J Microbiol Biotechnol 25(10):1837–1847. doi:10.1007/s11274-009-0085-4

    Article  CAS  Google Scholar 

  64. Hopkins MJ, Macfarlane GT, Furrie E, Fite A, Macfarlane S (2005) Characterisation of intestinal bacteria in infant stools using real-time PCR and northern hybridisation analyses. FEMS Microbiol Ecol 54(1):77–85. doi:10.1016/j.femsec.2005.03.001

    Article  CAS  PubMed  Google Scholar 

  65. Kanno T, Matsuki T, Oka M, Utsunomiya H, Inada K, Magari H, Inoue I, Maekita T, Ueda K, Enomoto S, Iguchi M, Yanaoka K, Tamai H, Akimoto S, Nomoto K, Tanaka R, Ichinose M (2009) Gastric acid reduction leads to an alteration in lower intestinal microflora. Biochem Biophys Res Commun 381(4):666–670. doi:10.1016/j.bbrc.2009.02.109

    Article  CAS  PubMed  Google Scholar 

  66. Matsuki T, Watanabe K, Fujimoto J, Miyamoto Y, Takada T, Matsumoto K, Oyaizu H, Tanaka R (2002) Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68(11):5445–5451. doi:10.1128/aem.68.11.5445-5451.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A (2004) Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J Appl Microbiol 97(6):1166–1177

    Article  PubMed  Google Scholar 

  68. Huijsdens XW, Linskens RK, Mak M, Meuwissen SGM, Vandenbroucke-Grauls CMJE, Savelkoul PHM (2002) Quantification of bacteria adherent to gastrointestinal mucosa by real-time PCR. J Clin Microbiol 40(12):4423–4427. doi:10.1128/jcm.40.12.4423-4427.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Engineering Research Council of Canada (NSERC) and the “Fonds de recherche du Québec—Nature et technologies” (FRQNT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Fliss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, B., Savard, P. & Fliss, I. Survival and Metabolic Activity of Pediocin Producer Pediococcus acidilactici UL5: Its Impact on Intestinal Microbiota and Listeria monocytogenes in a Model of the Human Terminal Ileum. Microb Ecol 72, 931–942 (2016). https://doi.org/10.1007/s00248-015-0645-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0645-0

Keywords

Navigation