Skip to main content

Advertisement

Log in

Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Bacterial communities associated with tree canopies have been shown to be specific to their plant hosts, suggesting that plant species-specific traits may drive the selection of microbial species that comprise their microbiomes. To further examine the degree to which the plant taxa drive the assemblage of bacterial communities in specific plant microenvironments, we evaluated bacterial community structures associated with the phyllosphere, dermosphere, and rhizosphere of seven tree species representing three orders, four families and four genera of plants from a pristine Dense Ombrophilous Atlantic forest in Brazil, using a combination of PCR-DGGE of 16S rRNA genes and clone library sequencing. Results indicated that each plant species selected for distinct bacterial communities in the phyllosphere, dermosphere, and rhizosphere, and that the bacterial community structures are significantly related to the plant taxa, at the species, family, and order levels. Further characterization of the bacterial communities of the phyllosphere and dermosphere of the tree species showed that they were inhabited predominantly by species of Gammaproteobacteria, mostly related to Pseudomonas. In contrast, the rhizosphere bacterial communities showed greater species richness and evenness, and higher frequencies of Alphaproteobacteria and Acidobacteria Gp1. With individual tree species each selecting for their specific microbiomes, these findings greatly increase our estimates of the bacterial species richness in tropical forests and provoke questions concerning the ecological functions of the microbial communities that exist on different plant parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lambais MR, Crowley DE, Cury JC et al (2006) Bacterial diversity in tree canopies of the Atlantic forest. Science 312:1917. doi:10.1126/science.1124696

    Article  CAS  PubMed  Google Scholar 

  2. Redford AJ, Bowers RM, Knight R et al (2010) The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ Microbiol 12:2885–2893. doi:10.1111/j.1462-2920.2010.02258.x

    Article  PubMed Central  PubMed  Google Scholar 

  3. Kim M, Singh D, Lai-Hoe A et al (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63:674–681. doi:10.1007/s00248-011-9953-1

    Article  PubMed  Google Scholar 

  4. Savoia D (2012) Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiol 7:979–990. doi:10.2217/fmb.12.68

    Article  CAS  PubMed  Google Scholar 

  5. Dicke M (2000) Chemical ecology of host-plant selection by herbivorous arthropods: a multitrophic perspective. Biochem Syst Ecol 28:601–617

    Article  CAS  PubMed  Google Scholar 

  6. Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157. doi:10.1007/s10311-006-0068-8

    Article  CAS  Google Scholar 

  7. Bulgarelli D, Schlaeppi K, Spaepen S et al (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838. doi:10.1146/annurev-arplant-050312-120106

    Article  CAS  PubMed  Google Scholar 

  8. Rønsted N, Symonds MRE, Birkholm T et al (2012) Can phylogeny predict chemical diversity and potential medicinal activity of plants? A case study of Amaryllidaceae. BMC Evol Biol 12:182. doi:10.1186/1471-2148-12-182

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  10. Øvreås L, Forney L, Daae FL (1997) Distribution of bacterioplankton in meromictic lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Microbiology 63:3367–3373

    Google Scholar 

  11. Oksanen J, Blanchet FG, Legendre P et al (2013) Package “Vegan” 2.0-10 [Documentation File]. http://cran.r-project.org/web/packages/vegan/index.html. Accessed 14 Jan 2014

  12. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  13. Marchesi JR, Sato T, Weightman AJ et al (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    Article  CAS  PubMed  Google Scholar 

  15. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Quast C, Pruesse E, Yilmaz P et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Qvit-Raz N, Finkel OM, Al-Deeb TM et al (2012) Biogeographical diversity of leaf-associated microbial communities from salt-secreting Tamarix trees of the Dead Sea region. Res Microbiol 163:142–150. doi:10.1016/j.resmic.2011.11.006

    Article  PubMed  Google Scholar 

  19. Finkel OM, Burch AY, Elad T et al (2012) Distance-decay relationships partially determine diversity patterns of phyllosphere bacteria on Tamarix trees across the Sonoran Desert [corrected]. Appl Environ Microbiol 78:6187–6193. doi:10.1128/AEM.00888-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Martins G, Lauga B, Miot-Sertier C et al (2013) Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS ONE 8:e73013. doi:10.1371/journal.pone.0073013

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Courtois EA, Baraloto C, Paine CET et al (2012) Differences in volatile terpene composition between the bark and leaves of tropical tree species. Phytochemistry 82:81–88. doi:10.1016/j.phytochem.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  22. Sandhu A, Halverson LJ, Beattie GA (2007) Bacterial degradation of airborne phenol in the phyllosphere. Environ Microbiol 9:383–392. doi:10.1111/j.1462-2920.2006.01149.x

    Article  CAS  PubMed  Google Scholar 

  23. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  CAS  PubMed  Google Scholar 

  24. Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90. doi:10.1038/nature11237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95. doi:10.1038/nature11336

    Article  CAS  PubMed  Google Scholar 

  26. Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840. doi:10.1038/nrmicro2910

    Article  CAS  PubMed  Google Scholar 

  27. Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755. doi:10.1111/j.1365-2672.2008.03906.x

    Article  CAS  PubMed  Google Scholar 

  28. Hol WHG, Bezemer TM, Biere A (2013) Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens. Front Plant Sci 4:81. doi:10.3389/fpls.2013.00081

    Article  PubMed Central  PubMed  Google Scholar 

  29. Shen X, Hu H, Peng H et al (2013) Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. BMC Genomics 14:271. doi:10.1186/1471-2164-14-271

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Delmotte N, Knief C, Chaffron S et al (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433. doi:10.1073/pnas.0905240106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Burch AY, Zeisler V, Yokota K et al (2014) The hygroscopic biosurfactant syringafactin produced by P. syringae enhances fitness on leaf surfaces during fluctuating humidity. Environ Microbiol. doi:10.1111/1462-2920.12437

    PubMed  Google Scholar 

  32. Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486. doi:10.1016/j.tplants.2012.04.001

    Article  CAS  PubMed  Google Scholar 

  33. Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ricardo Ribeiro Rodrigues for coordinating the Biota project, Gerd Sparovek for contribution and discussion of ideas, Geraldo Franco for assistance in identifying the tree species, Marianna Giannoti and Natalia Ivanauskas for logistical support, and Robinson M. Andrade and Rafael D. Armas for helping with sample and data analyses. This project was supported by BIOTA-FAPESP (São Paulo Research Foundation, São Paulo, Brazil).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcio R. Lambais or David E. Crowley.

Additional information

The nucleotide sequence data reported are available in the GenBank databases under the accession numbers KC745794-KC746536, KC742543-KC743241, and KC744053-KC745793.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 2.47 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lambais, M.R., Lucheta, A.R. & Crowley, D.E. Bacterial Community Assemblages Associated with the Phyllosphere, Dermosphere, and Rhizosphere of Tree Species of the Atlantic Forest are Host Taxon Dependent. Microb Ecol 68, 567–574 (2014). https://doi.org/10.1007/s00248-014-0433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0433-2

Keywords

Navigation